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1. Introduction 

The original Outdoor Recreation Valuation (ORVal) project set out to build a recreational demand 

model that could be used to estimate the recreational welfare value derived from any existing or 

new greenspace in the whole of England. While the methods of recreational demand modelling are 

well established, the previous extent of application has tended to focus on just one form of 

greenspace (e.g. beaches, lakes or municipal parks) and been limited to a restricted geographic 

region. The challenge of the first ORVal project was to show that it was possible to generate a 

recreational demand model that functioned at the scale of an entire nation and encompassed the 

full spectrum of outdoor greenspace localities. Moreover, the project sought to develop an online 

tool that could be used to interrogate this recreation demand model and explore the values that are 

or could be generated by existing or new recreational sites.  

Phase II of the development of the Outdoor Recreation Valuation (ORVal) Tool, has sought to move 

from the prototypes of the original analyses to a full working model and tool. A key part of that 

undertaking has been a major programme of empirical work resulting in a significantly extended and 

improved ORVal Recreation Demand model. At the outset, the objectives of the empirical analysis 

were as follows; 

 To supplement the estimation data on the outdoor recreational choices of English residents 

with data from the Welsh Outdoor Recreation Survey, 

 To extend the model to include the choice as to which mode of transport to use when 

undertaking a recreation trip to outdoor greenspace. 

 To calculate precise travel costs for driving and walking to greenspaces based on detailed 

road and path networks for the UK augmented by precise calculations of fuel consumption 

and the latest research on the cost of travel time. 

 To extend the characterisation of decisions over participating in outdoor recreation; 

particularly in allowing for differences in participation across ethnic groups and to explore 

the impact of differing weather conditions on recreation participation. 

 To extend the characterisation of choice of recreation site to allow for various details of the 

quality of greenspace including, river water quality, beach  type, bathing water quality and 

woodland type 

 To carry out a programme of specification exploration and model testing in order to identify 

the most appropriate model to use in the tool and document its merits relative to other 

specifications. 

The purpose of this report is to document this programme of empirical work. 

2. Recreation Demand Modelling 

The approach economists normally adopt to estimate the welfare derived from a good is to observe 

how demand for that good changes as its price changes. In essence, that relationship traces out how 

much money individuals are willing to give up in order to enjoy that good; a quantity that (roughly 

speaking) defines the measure of welfare that economists call economic value. Indeed, throughout 

this report when we talk about ‘value’ or ‘valuation’ we are referring to this particular monetary 

measure of welfare. 
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More often than not, however, access to greenspaces does not command a price, or if it does that 

price is often minimal and without sufficient variation to directly estimate the demand-price 

relationship. Hence, conventional techniques of welfare estimation are frequently not applicable to 

the valuation of greenspace.  A solution to this problem was first forwarded by Harold Hotelling in a 

letter to the National Park Service of the United States in 1947 (Smith and Kaoru 1990). He noted 

that though the greenspace is not itself a market good, in undertaking a recreational trip individuals 

incur time and travel costs that in effect can be considered the ‘price’ of access. In other words, 

when we observe an individual taking a trip to a greenspace, we can presume that the value they 

derive from that experience is worth at least the costs incurred in travelling to the site.  

When considering just one site, this travel cost method progresses by examining how many trips 

individuals living at different distances, and hence with different travel costs, choose to make to the 

recreational greenspace. Information of that nature is sufficient to inform on the value for that 

particular site. The challenge for the ORVal project was considerably different from the single site 

case. In particular, we were concerned with recreational activities over all greenspaces in England 

where those greenspaces were differentiated not only in their location but in the recreational 

experience they offered.  

A related framework that better suits our needs is one that focuses on an individual’s choice of 

which of the array of different greenspaces to visit rather than how many trips to take to a particular 

greenspace. This discrete choice approach is also a form of travel cost modelling. The intuition of 

how information on discrete choices provides evidence for welfare valuation progresses as follows. 

Imagine, an individual has a choice between just two greenspaces. Both greenspaces provide visitors 

with 2ha of open grassland but the more distant greenspace also possesses 2ha of woodland. If we 

observe the individual choosing to visit the more distant greenspace we can conclude that the extra 

welfare derived from being able to visit a greenspace with woodland must be worth at least as much 

as the extra costs in travelling to that more distant location rather than the closer greenspace. Given 

sufficient observations on individuals choosing between quality-differentiated greenspaces at 

different distances from their homes, the discrete choice approach can inform on the economic 

value that individuals realise from greenspaces with different qualities. Moreover it can be used to 

predict how likely it is that an individual will choose to visit a particular greenspace from the set of 

greenspaces available to them.  

The econometric method used to estimate discrete choice models are known as Random Utility 

Models (RUMs). We review the particular RUM approach used in the ORVal empirical analysis model 

in Section 4. The approach is data intensive. It requires information on the choices individuals make 

on each recreational choice occasion (in our modelling we assume that each day represents such a 

choice occasion). In particular, we need to know whether an individual took a trip to greenspace or 

not and, what mode of transport they decided to use in getting to that location, what the qualities of 

that site were and the time and travel costs incurred in getting there. Moreover, since this is a choice 

model, we need details of the qualities associated with each other recreational greenspace that 

individual might have visited instead and the travel costs of different modes of transport associated 

with reaching each of those alternative locations. In Section 2 we describe the data sources used to 

construct such a data set then in Section 3 how that data was processed to generate the estimation 

data set. Finally, Section 5 describes the modelling results and model specification testing. 
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3. Data 

3.1 MENE Data 

The primary data set supporting estimation of the ORVal model is provided by the Monitor of 

Engagement with the Natural Environment (MENE) survey. Administered on behalf of Natural 

England, DEFRA and the Forestry Commission, the MENE survey provides a large, random location 

sample of recreational day trips taken by adults (over 16 years of age) residents of England. As a 

consequence, the estimates of visits and values that are estimated from the ORVal model are limited 

to: 

 Recreational day trips  

 Residents of England 

 Adults (over 16s) 

The survey is administered face-to-face, recording the recreational trips to greenspace taken by the 

respondent over the seven days prior to the interview. Moreover, for one randomly selected trip, 

the survey elicits detailed information regarding the respondent’s activities on that trip as well as 

the location and characteristics of the recreational site visited. In this report we describe this trip as 

the focus visit. 

The MENE survey runs throughout the year sampling at least 800 respondents each week making 

the data seasonally representative. As recorded in Table 1, the annual sample amounts to 

approximately 50,000 respondents. The ORVal extension project took advantage of the release of 

the 2015-16 survey release meaning that the modelling was based on seven years of data collected 

since the survey began in 2009.  

Table 1: Annual sample sizes in the MENE survey 

Year Sample 

2009-10 48,514 

2010-11 46,099 

2011-12 47,418 

2012-13 46,749 

2013-14 46,785 

2014-15 45,225 

2015-16 45,965 

Total: 326,755 

  

The MENE data is provided with a demographic weight for each observation. The weight is 

calculated so as to ensure that the sample of respondents collected in one month can be adjusted so 
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as to be representative of the adult population of the UK in that year. The demographic 

characteristics used in calculating the weights are: 

 age and sex (for example, males 16- 24, females 85+),  

 region of residence,  

 social grade,  

 presence of children in the household,  

 sex and working status (for example, male full time),  

 presence of a dog in the household and  

 urban/rural residence  

Put simply the weight for each observation indicates the number of people in the population 

represented by that respondent. Accordingly, the weighted sum of observations of, for example, 

male respondents aged 16-24 will equal the number of males in that age group in England, with the 

same being true of all the other demographic categories in the list above. 

One of the objectives of the ORVal extension project was to model the choice of whether to walk or 

travel by motorised vehicle to a recreational site. In the original modelling effort we had assumed 

that all travel was by car. Under that assumption we took it as sufficient to model people’s home 

location as being the population weighted centroid of their home LSOA (lower super output area),  

reasoning that the error in the calculations of travel times and distances from home to a site would 

be of a scale that was decision irrelevant when travelling by car. Such reasoning would not hold for 

walking decisions, where one might expect decisions to swing on significantly smaller differences in 

distance. As part of the extension project, therefore, we were grateful that Natural England (through 

the survey company Kantar TNS) furnished us with postcode data for respondents in the MENE 

survey, allowing us to identify a highly accurate estimate of home location. 

The MENE survey is a pseud-diary study asking respondents to recall their outdoor recreational 

activity over the seven days previous to the interview. For one randomly selected visit made over 

that prior week the survey goes into detail, recording information on the exact location of the 

greenspace visited and various details of the sites characteristics and the respondents activities. The 

model described subsequently makes use of this entire diary of recreational activity. 

A detailed description of the MENE survey, its administration and the calculation of demographic 

weights can be found in the MENE Technical Report (Natural England 2015). 

3.2 WORS data 

One of the original objectives of the ORVal extension project had been to include data from the 

Welsh Outdoor Recreation Survey (WORS) in the estimation of the recreation demand model. That 

model is reasonably demanding of data, at a minimum requiring information on the respondent’s 

home location, the location of the site they visited, details of when the trip was made and how the 

respondent travelled. A key first step in the extension project was to source the WORS data and 

examine the extent to which the data was compatible with a programme of joint estimation with the 

MENE data. 

Three iterations of the WORS survey have now been undertaken with data available from 2008, 

2011 and 2014. While the 2008 and 2011 surveys did not record the locations of recreational visits, 

extra details were taken in the 2014 survey allowing visit locations to be geolocated in the same way 
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as is done for the MENE survey. Accordingly, only the 2014 lent itself to possible use in model 

estimation. Again we were grateful that Natural Resources Wales provided us with the site 

geolocation data as well as home postcodes for the sample respondents.  

The WORS survey differs from the MENE survey in one other important manner. While the MENE 

survey pursues a strict diary response model, collecting data on outdoor trips taken over the seven 

days previous to the survey, the WORS survey asks about recreation activity over the last month 

recording information on the last trip taken. For our purposes that posed a problem, in so much as 

no details are taken as to the date of that focus trip. The ORVaL model uses data on the weather, 

day of week and time of year as key explanatory variables in the choice of participation. Without 

knowing the date of the focus trip pulling such data together for the Welsh sample would be very 

difficult. We hoped that we could get part way to understanding when the trip was taken by using 

data on the data of interview to at least establish the time of year of the visit. Acting on our behalf 

NRW approached the survey company that administered the survey to release that information for 

our use. Unfortunately, it transpired that the survey company had stripped out the survey date 

records from their stored data such that that information was no longer available. 

Ultimately, it was decided that the differences in the MENE and WORS data sets mitigated against a 

programme of joint estimation. Rather, the revised plan was to estimate the recreation demand 

model from the detailed MENE data then use a process of calibration to adjust specific parameters 

of the model to fit with higher level data from the WORS survey. In particular, to introduce a Wales-

specific variable to the model and then adjust this parameter until the model’s estimates of rates of 

participation in outdoor recreation amongst Welsh residents best match the rates of participation 

recorded in the WORS survey in 2008, 2011 and 2014. 

3.3 ORVal Greenspace Map 

As well as information on recreational trips, a second key dataset needed for estimation of a 

recreation demand model are details of the locations of sites for outdoor recreational activity. In this 

project that data were provided by the ORVal greenspace map. The ORVal greenspace map is a 

detailed spatial dataset compiled through the combination and manipulation of a large number of 

primary data sources that describes the location and characteristics of accessible greenspace across 

England. Construction of the ORVal greenspace map is provided in Day (2016).  

As part of the extension project, the ORVal greenspace map has been extended to include Wales. An 

expert of that dataset is shown in Figure 1. The Welsh greenspace map was constructed using an 

algorithm that replicates the process used to generate the original English data. Briefly, a data set of 

‘parks’ was generated through the collation of the following datasets;  

 Country Parks: Data sourced from the LLE geoportal. 

 National Nature Reserves: Data sourced from the LLE geoportal. 

 Local Nature Reserves: Data sourced from the LLE geoportal. 

 Openstreetmap (OSM) Parks: A download of features (‘ways’ and ‘relations’, in OSM 

terminology) from the OSM where the tags ‘landuse’ or ‘leisure’ are given the values ‘park’, 

‘common’, ‘recreation_ground’ or ‘village_green’. So as to focus on open access recreation 

areas, OSM Parks was then tidied to remove features where access is tagged as ‘private’ or 

‘restricted’, or as being the grounds of a leisure centre or sports club, school playing fields, 

hospital grounds or supermarket premises. To remove small areas of amenity grassland the 
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data was cleaned to exclude roadside verges and roundabouts before finally deleting all 

unnamed OSM parks less than 0.4ha is extent and not containing a playground. 

 OSM Nature Reserves: A download of features from the OSM where the tags ‘landuse’ or 

‘leisure’ are given the value ‘nature reserve’. 

 OSM Public Gardens: A download of features from the OSM where the tags ‘landuse’, 

‘leisure’ or ‘amenity’ are given the value ‘garden’ and where ‘access’ was specifically labelled 

as 'public', 'yes', 'permissive' or 'destination'. 

 Forestry Commission Recreation Areas: A data set constructed from the ‘National Forest 

Estate England Recreation Routes’ dataset. 

 Woods for People: Data sourced from the Woodland Trust’s ‘Woods for People’ dataset 

restricted to areas in excess of 0.4ha extent. 

 OSM Cemeteries: A download of features from the OSM tagged as cemeteries or graveyards. 

Small cemeteries of under 0.2ha extent were removed from the data. 

 OSM Allotments: A download of features from the OSM tagged as allotment.  

A Welsh ‘paths’ data set was constructed from OSM data by selecting features in which the key 

Highway had been tagged as ‘track’,‘footway’,‘path’,‘cycleway’, ‘byway’, ‘trail’,‘bridleway’. The data 

were reduced by removing all features for which access was private or otherwise restricted. Path 

stretches in urban areas that did not border waterways or other green features were eliminated and 

an algorithm used to gather paths together into networks of connected paths. Access points to paths 

were identified by points of intersection between path networks and the roads network. 

Finally, a beach location dataset was constructed from the http://britishbeaches.info website. The 

data were cleaned and merged according to the rules described in the original ORVal data report 

(Day, 2016). Note that the Welsh data does not contain information on greens created under the 

Millennium Greens and Doorstep Greens schemes which were restricted to England. 

As described in Table 2, the ORVal greenspace map identifies some 138,617 greenspace sites in 

England and Wales that could form the focus of a recreational trip.  

Table 2:  Recreation sites in the ORVal greenspace map 

Type 

Number of Sites 

England Wales 

Parks:   

Municipal Park 19,363 1,000 

Cemetery 8,230 783 

Woods 7,359 1,241 

Allotment 6,865 198 

Nature 2,844 211 

Country Park 413 37 

Path Access Points 82,591 6,621 

Beaches 630 231 

Total 128,295 10,322 

 

http://britishbeaches.info/
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Figure 1: ORVal Greenspace Map for Wales - Cardiff & Newport
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The recreation features identified on the ORVal greenspace map come in three basic forms; 

 parks which consist of areas of accessible greenspace within well-defined boundaries over 

which visitors usually have freedom to wander at will,  

 paths which consist of accessible, walkable routes that pass through the landscape, often 

traversing a variety of different greenspaces and tending to restrict visitors to defined routes 

of passage. 

 beaches.  

Each recreation site is described by various aspects of its physical characteristics; particularly the 

site’s dimensions, landcovers, designations and points of interest. 

Table 3 provides an indication of landcovers used to describe sites and how frequently those 

landcovers were present at the various sites. Note that sites are characterised by a diversity of land 

covers so the columns of Table 3 do not sum to the number of sites of different types shown in Table 

2. Moreover, for paths the presence of a landcover is determined by whether that landcover was 

found along the path network accessed by a path access point with in 10km of that access point. 

Further details can be found in the ORVal Greenspace Map report (Day, 2016). 

Table 3: Landcovers present at recreation sites 

Landcover 

 

Parks Paths Beaches 

Number Percent Number Percent Number Percent 

Woods 18,151 37.4% 75,690 84.8% 0 0.0% 

Wood Pasture 1,047 2.2% 11,382 12.8% 0 0.0% 

Agriculture 439 0.9% 78,301 87.8% 0 0.0% 

Natural Grass 4,070 8.4% 64,824 72.7% 0 0.0% 

Moors 867 1.8% 17,323 19.4% 0 0.0% 

Mountain 26 0.1% 946 1.1% 0 0.0% 

Coastal 1,239 2.6% 3,713 4.2% 861 100.0% 

Saltmarsh 218 0.4% 2,308 2.6% 0 0.0% 

Marsh & Fen 632 1.3% 8,844 9.9% 0 0.0% 

Managed Grass 19,245 39.6% 83,343 93.4% 0 0.0% 

Sports Pitches 4,177 8.6% 4,600 5.2% 0 0.0% 

Gardens 571 1.2% 2,747 3.1% 0 0.0% 

Allotments 7,018 14.5% 923 1.0% 0 0.0% 

Cemeteries 8,955 18.4% 3,208 3.6% 0 0.0% 

Sea 1,489 3.1% 3,105 3.5% 861 100.0% 

Estuary 370 0.8% 2,292 2.6% 0 0.0% 

River 9,343 19.2% 54,113 60.7% 0 0.0% 

Lake 1,509 3.1% 14,397 16.1% 0 0.0% 

 

Similar data on the presence of different forms of formal designation are provided in Table 4. Note 

that the category ‘nature’ includes numerous form of designation for nature protection including 

local and national nature reserves, Natura 2000 sites, Ramsar Sites, SSSIs and Ancient Woodlands. 
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Table 4: Designations present at recreation sites 

Designation 
Parks Paths Beaches 

Number Percent Number Percent Number Percent 

National Park 2,389 4.9% 11,245 12.6% 57 6.6% 

AONB 3,689 7.6% 17,172 19.2% 272 31.6% 

Heritage Coast 448 0.9% 2,202 2.5% 222 25.8% 

National Trail 672 1.4% 6,083 6.8% 330 38.3% 

Historic Park 1,420 2.9% 6,431 7.2% 43 5.0% 

Millennium Green 445 0.9% 163 0.2% 5 0.6% 

Nature 5,059 10.4% 22,911 25.7% 650 75.5% 

No Designation 32,384 66.7% 33,364 37.4% 90 10.5% 

 

Table 5 provides details of the presence of different points of interest at recreational sites. 

Table 5: Points of Interest present at recreation sites 

Designation 

 

Parks Paths Beaches 

Number Percent Number Percent Number Percent 

Archaeological Feature 660 1.4% 8,696 9.7% 0 0.0% 

Historic Building 654 1.3% 4,344 4.9% 0 0.0% 

Scenic Feature 371 0.8% 4,735 5.3% 0 0.0% 

Playground 8,700 17.9% 3,194 3.6% 0 0.0% 

Viewpoint 511 1.1% 18,984 21.3% 0 0.0% 

No Points of Interest 38,228 78.7% 70,228 78.7% 861 100.0% 

 

3.6 Habitat Qualities 

A key objective of the ORVal extension project was to provide a richer characterisation of the quality 

of certain habitats present at recreational sites and determine whether those quality characteristics 

could be seen to make a significant difference in recreational choice behaviour.  One of the 

difficulties faced in extending the characterisation of habitat quality was that very few habitat 

quality datasets exist for the entirety of England and Wales. Accordingly, the choice of characteristics 

developed for the ORVal extension analysis tend to reflect data availability rather than necessarily 

capturing those aspect of environmental quality thought most likely to impact on recreation. 

Woodland Type 

The Forestry Commission’s National Forest Inventory (NFI) provides an annual appraisal of woodland 

extent, composition and condition in Great Britain. The spatially referenced data categorises areas of 

woodland into the various categories that, for the purposes of the modelling exercise were reduced 

to the following three groups:  

o Conifer (containing conifer and mixed mainly conifer categories) 

o Broadleaved (containing broadleaf and mixed mainly broadleaf categories) 

o Felled & Young Trees (containing the felled and young trees categories).  
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The original ORVal model contained a variable identifying the (natural log) of the area of a recreation 

site in woodland. In the extension model, additional variables were included indicating the 

percentage of that woodland area that was in each of the three tree type categories. 

Wildlife Friendly Farming 

The original ORVal model included a variable indicating the area of agricultural land traversed by a 

path used for recreational activity. To further characterise that agricultural land, DEFRA’s spatially 

referenced records of farmland under Higher Level Stewardship schemes was used to identify the 

area of land under some form of government supported wildlife friendly farming. 

Beach Littoral Sediment 

Using data from the http://britishbeaches.info website, beach recreational sites were classified 

according to their dominant littoral sediment into one of the following four categories; 

o Sand 

o Shingle 

o Sand & shingle 

o Rocky or Harbour 

Dummy variables indicating membership of these categories were included to characterise beaches. 

Bathing Water Quality 

The Environment Agency in England and Natural Resources Wales measure water quality at 

designated bathing water sites. Annual ratings are released that classify bathing water quality on a 

scale from poor to excellent. For the purposes of the ORVal model, each beach was identified as; 

o High quality (containing sites classified as excellent or good) 

o Low quality (containing sites classified as sufficient or poor) 

Dummy variables indicating bathing water quality were included in the model for each beach. 

River Ecological Status 

As part of Water Framework Directive reporting requirements, the Environment Agency and Natural 

Resources Wales collect data on river water quality releasing that data on a six year cycle (Cycle 1 – 

2009 and Cycle 2 – 2015). Using the smallest spatial scale at which that data is released (water body) 

the WFD ecological status categorisation of rivers passing through or by recreational sites was 

identified. For the purposes of the ORVal model, river ecological status classifications were 

combined into two groups 

o High quality (containing sites classified as high or good) 

o Low quality (containing sites classified as moderate, poor or bad) 

Dummy variables indicating the ecological status of any river passing through or by a recreational 

site were included in the model 

3.7 Weather 

The Met Office MIDAS data archive provides daily weather details for meteorological stations across 

the UK over the time span of the MENE dataset. Of the various measures recorded in that data, 

http://britishbeaches.info/
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those indicating daily rainfall and daytime temperature were chosen as potentially influencing 

recreational decisions. Attributing weather measurements to each respondent for each day of their 

seven day diary required some significant data processing. First, for each respondent the set of 

weather stations nearest to their home location were identified. Second, for each day of their seven 

day diary of recreational activity, a weighted average of the weather measures recorded at those 

neighbouring weather stations was used to estimate the weather at their home location. Rather 

than a simple linear interpolation the weighting variables were calculated using a natural neighbour 

interpolation method made available through the CGAL C++ library of spatial data processing 

routines. 

4. Data Processing 

4.1 Basic Observation Classification 

The basic unit of observation in our data is a respondent-day; that is to say, the choice of outdoor 

recreation activity made by a respondent on a particular day. Since each respondent in the MENE 

data set provides information on their recreation activity over 7 days, each respondent contributes 7 

different observations to the data. 

For each of those observations the MENE data reveals whether or not the respondent took an 

outdoor recreation trip on that day. For the observation constituting the focus trip (the randomly 

selected trip for which detailed information is selected), MENE also provides information from which 

we might identify the recreation site visited and how they travelled to that site. Accordingly, at a 

basic level we can classify observations into one of three groups; 

 No trip taken 

 Trip taken to unidentified site 

 Trip taken to identified site 

For reasons not reported in the MENE documentation, the home location of some respondents is 

not recorded. Since the ORVal model requires information on how far different recreation sites are 

from a respondent’s home, we were forced to drop these 8,326 observations from the dataset. In a 

similar vein, a key new dimension of the new ORVal model concerns choice over mode of transport. 

A further 636 observations failed to record the mode of transport used on the focus trip. Under the 

assumption that such miscoding of the data was random, those observations were also dropped 

from the sample. 

Following the removal of observations from the dataset, demographic weights for the remaining 

sample were recalculated using the ‘Anesrake’ package for the R statistical software. The new 

weights ensured that the reduced sample could still be reweighted so as to be representative of the 

English population. 

The remaining 316,959 observations returned complete and valid data on recreation activity. All the 

same, a number of reclassifications were necessary. For a start, for some observations the focus trip 

was reported as starting out from a location that was not the respondent’s home. One possibility for 

explaining such responses is that the respondent was not at their home for the period covered by 

the survey perhaps staying with friends or on holiday. Since, the ORVal model focuses exclusively on 

day trips (as opposed to overnight trips) for the purposes of outdoor recreation, the 5,164 
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observations, rather than dropping those observations we reclassified them as being observations 

for which the respondent chosen the ‘outside option’, that is to say, had chosen something other 

than to take a recreational day trip to a greenspace.   

In addition, the data recorded 608 respondents that had taken a trip to a village. Since visiting a 

village does not specifically imply engagement with greenspace, those observations were reclassified 

as choosing the outside option. In a similar vein 4,506 respondent’s described the trip they had 

taken as being for the purposes of cycling or viewing greenspace from their car. Since both these 

transport based forms of greenspace recreation do not allow us to tie down enjoyment of the 

activity to some particular location, we again classify these observations as choosing the outside 

option. While, the 1,213 observations of trips to play golf do involve engaging with the environment 

in a particular location, that form of leisure activity is different from those to open access 

greenspace recreation sites insomuch as playing golf usually involves the payment of an entry fee 

(green fee). Accordingly, we classify these trips as constituting choice of the outside option. 

Finally, 34,677 observations in the MENE dataset recorded a trip to open access greenspace but the 

record did not report the location of the greenspace visited. These observations were taken as being 

choice of the ‘inside option’ (that is to say, of taking a recreation trip) but that the data did not 

reveal the exact site chosen. 

Following reclassification the dataset consisted of 202,121 observations where respondents had not 

taken a trip to greenspace over the course of the week previous to the interview, 34,677 

observations where the focus trip was to an open access greenspace but we were unable to 

ascertain which particular greenspace and 80,886 where the focus trip was to an identified 

recreation site. 

4.2 Choice of Transport Mode 

One of the shortcomings of the original ORVal model was that it made the assumption that all 

outdoor recreation trips are made by private car. As such, the time and expenditure costs for all trips 

are based on those associated with driving. As shown in Table 6, however, only some 38% of the 

trips observed in the MENE dataset are taken by car. The majority, 52%, of trips are made on foot. 

Clearly assuming that visitors regard the costs of a visit made on foot as the same as that made in a 

car is unlikely to be correct. Walking is likely to be seen as cheaper, insomuch as there is no direct 

expenditure on market goods (fuel), equally walking is more costly in time, such that the direction of 

any bias is not easy to deduce. 

In re-estimating the ORVal model, transport mode has been included as a second dimension of visit 

choice. Accordingly, each respondent is assumed not only to have a choice over travelling to every 

site in their choice set by car, but also through walking and, potentially, by each other means of 

transport. In practical terms, that causes some difficulties. The choice set of possible locations to 

visit for each respondent is very large, in theory as large as the 138,617 greenspace sites identified 

as available in England and Wales. Each time we add an alternative transport mode, we effectively 

add a further 138,617 options to the choice set; that is to say, the options of going to each of those 

sites by an alternative mode. Including those options for each of the 12 categories of transport 

model recorded in the MENE data would rapidly make the size of the estimation task quickly 
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becomes unfeasible. In developing the new ORVal model, two possible aggregations over transport 

mode were considered (see final columns of Table 6): 

 Four-Mode Classification: Walk, Car, Public, Bicycle 

 Two-Mode Classification: Walk, Car 

Table 6: Transport mode used for focus trips from MENE 2009-15 

MENE Transport Mode Number Percent 4 Category 2 Category 

On foot/ walking 58,286 51.85% Walk Walk 

Car/van 43,127 38.36% Car Car 

Bicycle/ mountain bike 3,521 3.13% Bicycle Walk 

Public bus or coach (scheduled service) 3,362 2.99% Public Car 

Train (includes tube/underground) 2,340 2.08% Public Car 

Coach trip/ private coach 596 0.53% Public Car 

Other 384 0.34% - - 

Motorcycle/ scooter 274 0.24% Car Car 

Taxi 224 0.20% Car Car 

Wheelchair/mobility scooter 137 0.12% Walk Walk 

On horseback  98  0.09% - - 

Boat (sail or motor)  73  0.06% - - 

 

The advantage of the four-mode classification is that it more faithfully replicates the key differences 

in modes chosen. The advantage of the two-class classification is that it captures the key distinction 

between motorised and non-motorised transport with the minimum of categories. Ultimately, and 

after discussion with an external referee, we opted for the two-mode classification, leaving open the 

possibility of extending the model to other modes at some future date. 

4.3 Destination Matching 

A first step in bringing together the MENE dataset and the ORVal Greenspace map requires matching 

the geocoded destinations for focus visits with the recreation sites identified in the greenspace map. 

Using destination details provided by the respondent (but not recorded in the released data) the 

survey administrators managed to attribute a six digit BNG reference to some 80% of the focus visits 

recorded in the survey (Natural England 2015). 

The procedure for matching the MENE destination locations with the ORVal Greenspace map 

focused on the 80,886 respondents that had taken an outdoor recreation trip to a greenspace during 

the week in which they were interviewed and for which a valid geolocation was provided in the 

MENE data. Note that our analysis does not address the complicating issue of multi-site trips; the 

MENE data fails to record the information that would allow a proper characterisation of such trips. 

Accordingly, each trip is assumed to be solely for the purpose of visiting the site identified by the 

MENE destination location.  
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A scoring procedure was developed to facilitate the process of matching MENE destination locations 

with the ORVal Greenspace Map. In short, for each focus visit all recreation sites within 2.5km of the 

destination location recorded in MENE were identified. Details of each of those sites were then 

compared to information provided by the MENE survey and scored according to how well they 

tallied with details of the actual site visited in terms of their location, environs, site type and 

landcovers. The weights used to determine scores in the matching procedure were calibrated 

through examining how well the matching algorithm performed with a training data set where the 

actual destination could be readily determined from the data provided in MENE. Details of the 

matching algorithm and the weights used in the procedure can be found in Appendix I. 

The matching algorithm took approximately 10 hours to run and identified a best guess as to the site 

on the ORVal Greenspace Map that was considered the mostly likely destination of each focus visit. 

As shown in Figure 2, where the score for each observation has been plotted in ascending order of 

score, matching scores varied across the range of 0 to 128.  

 

Figure 2: Matching scores for each focus trip plotted in ascending order of score 

Through inspection of Figure 2, the change in slope of the data around the 50 pts mark was 

identified as a natural point to split the data. For the roughly 10% of focus trip observations below 

that threshold, the level of match was deemed too low to believe we had identified the actual site 

visited. Accordingly, those observations were reclassified into the “trip to unidentified site” category. 

4.4 Respondent Sampling 

Even with unusable observations removed the remaining dataset contained 317,684 observations. 

Since the estimation procedure to be used in the analysis (to be described subsequently) was 

relatively complex, it was decided to further reduce the dataset by drawing a smaller sample from 

those observations. 

To ensure the richness of the data was maintained in that sampling procedure, a process of stratified 

random sampling was adopted where strata were defined by a respondent’s choice of recreation 
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activity on the focus trip. Accordingly, strata were defined as; (i) observations where no trip was 

taken; (ii) observations where a trip was taken to an unidentified site and (iii) a further 42 strata 

defined for observations where trips were taken to sites of different types. Those types were based 

on a classification of sites defined along four dimensions; 

 Type: Beach, Park, Path, Woods, Nature, Allotment, Cemetery or Country Park 

 Dominant Land Cover/Use: Woods, Sea Water, Fresh Water, Managed Grass, Agriculture, 

Natural Grass, Wetlands, Moors & Heath, Allotment or Cemetery  

 Dominant Designation: National Park, AONB, Heritage Coast, Nature (including local and 

national nature reserves, Natura 2000 and Ramsar sites, ancient woodland), National Trail, 

Forestry Commission, Millennium & Doorstep Green, Historic Park or Country Park 

 Points of Interest: Whether or not the site had archaeological remains, a historic building or 

a scenic feature or a viewpoint. 

Applying this this four-dimensional classification scheme to the 138,000 recreation sites in the ORVal 

Greenspace Map resulted in 493 unique classes of sites. Naturally some of those classes contained 

very few sites such that classes were further aggregated so as to ensure that the MENE data set 

contained at least 100 focus visits to sites in each group. Definitions of the 42 groups identified 

through this procedure are shown in Table 7 and represent the choice-based strata used for 

sampling. The third column of Table 7 shows the number of observations with a focus trip to sites in 

each strata. 

In order to establish our reduced sample, we used a stratified random sampling method in which we 

randomly sampled a fixed proportion of observations from each strata. To ensure representation of 

less commonly taken trips in the sample, the proportion taken for each strata was increasing in the 

rarity of visits. So a 20% sample was taken from strata with greater than 10,000 observed visits, a 

30% sample for strata with between 7,500 and 10,000 visits, a 40% sample from strata with between 

4,000 and 7,500 visits, a 50% sample from strata with between 3,000 and 4,000 visits, a 60% sample 

from strata with between 2,000 and 3,000 visits and a 75% sample for strata with less than 2,000 

visits. The sampling probabilities and number of sampled observations are shown in columns 4 and 5 

of Table 7. 

Note that to correct for sampling bias in the MENE survey and to ensure representativeness of the 

sample, observations were drawn from strata in proportion to their demographic weights; that 

procedure increased the likelihood of drawing respondents with under-represented demographic 

profiles and decreased the likelihood of drawing respondents with over-represented demographic 

profiles. 

A sampling weight was determined for each strata (described as the WESML weight in Table 7) that 

would late be used in estimation to correct for the choice-based sampling in the selection of 

observations (see Section 5). That weight indicates the ratio of the likelihood of a respondent drawn 

at random from the population having a focus trip to a site in a certain strata, to the likelihood of 

such an observation being in the sample. The population likelihood was estimated using the 

demographic weights for the full sample (see section 3.1) and the sample likelihood calculated from 

the numbers drawn from each strata; 
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Table 7: Choice-based sampling scheme and weights for (WESML) estimation 

 Description 
Num 

Obs 

Sample 

Probability 

Num 

Sample 

WESML 

Weight 

1 All Beaches 4,260 0.4 1,704 0.540 

2 All Cemeteries 2,962 0.6 1,777 0.349 

3 All Allotments 585 0.75 439 0.277 

5 All Country Park 4,755 0.4 1,902 0.538 

6 Path, Agriculture 4,227 0.4 1,691 0.565 

7 Park, Managed Grass 20,794 0.2 4,159 1.002 

8 Path, Managed Grass 1,705 0.75 1,279 0.297 

9 Path, Agriculture, Nature 1,637 0.75 1,228 0.304 

10 Path, Managed Grass, Nature 840 0.75 630 0.302 

11 Path, Agriculture, AONB 445 0.75 334 0.305 

12 Path, Managed Grass, AONB 389 0.75 292 0.306 

13 Woods, Woods 1,369 0.75 1,027 0.274 

14 Path, Woods, Nature 806 0.75 604 0.299 

15 Path, Managed Grass, Natl Park 294 0.75 220 0.306 

16 Woods, Woods, Nature 1,339 0.75 1,004 0.299 

17 Path, Woods, AONB 373 0.75 280 0.308 

18 Path, Agriculture, AONB, POI 338 0.75 254 0.301 

19 Path, Agriculture, Nature, POI 438 0.75 328 0.301 

20 Path, Agriculture, POI 544 0.75 408 0.302 

21 Path, Woods 468 0.75 351 0.289 

22 Path, Woods, Nature, POI 392 0.75 294 0.299 

23 Park, Woods 3,582 0.5 1,791 0.397 

24 Path, Fresh Water 1,173 0.75 880 0.286 

25 Path, Moors & Heath, Nature, POI 289 0.75 217 0.319 

26 Nature, Woods, Nature 1,635 0.75 1,226 0.280 

27 Path, Managed Grass, NP, POI 197 0.75 148 0.319 

28 Path, Managed Grass, AONB, POI 285 0.75 214 0.295 

29 Path Woods National Park 145 0.75 109 0.310 

30 Woods, Woods, AONB 360 0.75 270 0.309 

31 Path, Managed Grass, Nature, POI 313 0.75 235 0.286 

32 Other Fresh Water 3,996 0.5 1,998 0.421 

33 Other Sea Water 1,575 0.75 1,181 0.280 

34 Other Moors & Heath 577 0.75 433 0.308 

35 All Wetlands 210 0.75 158 0.291 

37 All National Trail 656 0.75 492 0.282 

38 All National Park 1,026 0.75 770 0.305 

39 Others No Designation 2,184 0.6 1,310 0.355 

40 Other Nature Designation 3,036 0.5 1,518 0.424 

41 All Historic Designation 8,744 0.3 2,623 0.696 

42 All Heritage Coast 196 0.75 147 0.296 

43 All Millennium & Doorstep Greens 471 0.75 353 0.267 

44 All Forestry Commission 346 0.75 260 0.308 

45 Other AONB Designation 930 0.75 698 0.306 
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 𝑤𝑠(𝑗𝑖) =
𝑄𝑠(𝑗𝑖

∗)

𝐻𝑠(𝑗𝑖
∗)

=
𝑃𝑟𝑜𝑝 𝑜𝑓 𝑃𝑜𝑝 𝑖𝑛 𝑠

𝑃𝑟𝑜𝑝 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒 𝑖𝑛 𝑠
     (𝑖 = 1, 2, … 𝑁) (1)  

where 𝑗𝑖
∗ indicates the site chosen by respondent 𝑖, 𝑠(𝑗𝑖

∗) identifies the sampling strata for that site 

and 𝑄𝑠(𝑗𝑖
∗) and 𝐻𝑠(𝑗𝑖

∗) are defined as shown in Equation (1). 

The final estimation dataset comprised a sample of 64,383 observations, where each observation 

identified recreation behaviour over 7 consecutive days. 

4.5 Choice Set Sampling 

With the sample of observations to be used in estimation established, the next step in developing 

the dataset was to define the choice set for each respondent in the sample. In the case of the ORVal 

extension model, the choice set was two dimensional, comprising a choice over transport mode 

(walk or vehicle) and recreation site to visit. The other option in the choice set, of course, is the 

outside option; the choice not to take a recreational trip to outdoor greenspace on a particular day. 

The issue of how to establish choice sets remains an open question in the literature; for a recent 

review see Thiene, Swait et al. (2017). In this research we assumed that each respondent’s choice 

set consists of all recreation sites in England and Wales though, of course, many would be too 

distant from a respondent’s house to ever compete with more proximate recreation sites offering 

similar experiences. Since the ORVal Greenspace Map identifies 138,617 sites, including each of 

these explicitly in the choice set of each observation for both modes of transport would result in an 

intractably large estimation dataset. Accordingly, we adopt a form of importance sampling in order 

to select a sample of sites for each observation and for each mode with which to model the full 

choice set. 

To select the choice set sampled for a transport mode for each respondent, we wanted to ensure 

that the selected sites included;  

(i) a diverse range of different outdoor greenspaces and  

(ii) sites that were likely to be important possible recreation locations for that respondent.  

To achieve (i), we again used a stratified sampling approach. Sites were categorised into 19 different 

strata according to their type and dominant landcover. The descriptions of those strata definitions 

are provided in the second column of Table 8.  

As shown in the final column of Table 8, a sampling scheme was devised in which the number of 

sites sampled from a category to be included in an individual’s choice set was selected according to 

the number of sites in each category type. So a category containing more than 10,000 sites (e.g. 

paths through agricultural land) was sampled 8 times, a category with greater than 1,000 but less 

than 10,000 sites was sampled 4 times and a category with less than 1,000 sites was sampled twice. 

Where the respondent had taken a trip to particular greenspace, that greenspace was included in 

their choice set and one less alternative sampled from the category corresponding to the chosen 

site. That sampling strategy lead to a selection of 83 sites, with the sampling process being repeated 

for both modes of transport. In other words, we selected 83 sites with which to represent trips to 

sites that might be taken in a vehicle and a separate independent sample of 83 sites to represent 



 

18 
 

sites that might be visited on foot. A final category of not taking a trip at all was added to the choice 

set giving a (sampled) choice set size of 163 options.  

Table 8: Choice set sampling scheme 

Category Description Num Sites Num Sampled 

0 No Trip 0 1 

1 Beaches 861 2 

2 Cemeteries 9,013 4 

3 Allotments 7,063 4 

4 Parks mostly woods 12,481 8 

5 Parks mostly wetland 140 2 

6 Parks by sea 245 2 

7 Parks mostly natural grass 1,184 2 

8 Parks mostly moorland 216 2 

9 Parks mostly managed grass 16,996 8 

10 Parks by fresh water 1,191 4 

11 Parks mostly agricultural 19 4 

12 Paths mostly woods 11,538 8 

13 Paths mostly wetland 169 2 

14 Paths by sea 1,110 2 

15 Paths mostly natural grass 3,267 4 

16 Paths mostly moorland 3,209 4 

17 Paths mostly managed grass 25,514 8 

18 Paths by fresh water 3,893 4 

19 Paths mostly agricultural 40,512 8 
 Total: 138,621 83 

 

To ensure (ii) (that is, that ‘important’ sites were selected from each strata for each mode) we first 

calculated the straight line distance between the centroid of each site and that respondent’s home 

location (as identified by their 6 digit postcode). Then for each strata we selected random samples of 

sites with sampling weight proportional to the inverse of distance for the car mode options and 

proportional to inverse distance squared for the walking mode options.1 

                                                           
1 To provide a brief intuition as to the functioning of these choice set sampling weights, in estimation we are 
going to need to calculate a sum across all the sites in a respondent’s real choice set; roughly speaking adding 
up the utility the respondent might have got if they had chosen to visit each site. So imagine that there were 

four sites in the real choice set and let us label the utility from visiting each of those sites as 𝑢1, 𝑢2, 𝑢3 and 𝑢4. 

Our best guess is that 𝑢1 > 𝑢2 > 𝑢3 = 𝑢4 in the ratio 4:2:1:1. Now imagine we wanted to estimate the sum 

𝑢1 + 𝑢2 + 𝑢3 + 𝑢4 but could only base our guess on that sum through drawing a sample of one observation. 
Given our best guess of the relative sizes of the four utilities, we could use importance sampling which means 

we would sample 𝑢1 with probability 4 8⁄ = 1 2⁄ , 𝑢2 with probability 2 8⁄ = 1 4⁄  and 𝑢3 and 𝑢4 both with 

probability 1 8⁄ . Now if we were to draw site 1 as the single observation in our sample, the weight in (3) would 

be 1 divided by 1 2⁄  which is 2. So our best bet at the sum 𝑢1 + 𝑢2 + 𝑢3 + 𝑢4 given this single observation 

would be 2𝑢1. Likewise if we were to draw site 2, our best estimate using our importance weights would be 

8𝑢2. If instead we were to draw a sample of two observations, there would be 2 chances of selecting any site 
into the choice set such that in calculating weights the denominator of (3) would be doubled. Say we drew 
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4.6 Travel and Time Cost Calculation 

The final step in generating an estimation data set was the calculation of travel costs for each option 

in the choice set. For that purpose we used the detailed Integrated Transport Network (ITN) data set 

provided by the Ordnance Survey. As shown in Figure 3 the ITN network not only identifies the roads 

suitable for travelling by car, but also an associated paths network which allows calculation of 

walking distances through the combined road and path network. 

 

Figure 3: Detail of the OS Integrated Transport Network (A - roads; B - roads and paths) 

                                                           
sites 2 and 3. The weight for 2 would be 1 (2 × 2 8⁄ )⁄ = 2 and the weight for 3 would be 1 (2 × 1 8⁄ )⁄ = 4. 
Accordingly, given that sample of two observations selected through importance sampling our best estimate of 

the sum 𝑢1 + 𝑢2 + 𝑢3 + 𝑢4  would be 2𝑢2 + 4𝑢3. 

A 

B 
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Our dataset consisted of a sample of 64,383 individuals for which driving times and costs must be 

calculated for trips to the 83 sites in the car mode choice set as well as walking times for trips to a 

further 83 sites in the walk mode choice set. Accordingly, our data demanded that we execute a 

total of 10,558,812 routing queries through the ITN network. The scale of that challenge was far in 

excess of the performance provided by standard routing software such as that available in the 

ArcGIS package. Accordingly, we turned to RoutingKIt, a highly efficient library of routing algorithms 

provided as C++ source code and applying the Contraction Hierarchy method of routing analysis 

(https://github.com/RoutingKit/RoutingKit). Having written the wrapper code to link RoutingKit to 

our data, we achieved speed ups of three orders of magnitude over that provided by ArcGIS’s 

Network Analyst. 

In running the routing queries we initialised the network with data on driving speeds along different 

categories of road and used RoutingKit to identify the fastest route from the home location to a site. 

For walking options we assumed a standard walking speed of 5kph. Using formulae provided by DFT 

(Department for Transport 2014), we took the length of time driving at different speeds along the 

route to calculate a fuel consumption for an average family car. Subsequently, we calculated a fuel 

cost by multiplying fuel consumption by the price of fuel at the time the trip was taken (taken as an 

average of diesel and unleaded prices from AA fuel price reports). 

We converted driving times into a monetary cost using results provided in recent research for DfT on 

the value of travel time (Department for Transport 2015). Those values were £2.30 per hour for trips 

under 8km, £3.47 per hour for trips between 8km and 32km, £6.14 per hour for trips between 32km 

and 160km and £9.25 per hour for trips greater than 160km (see Table 7.18 of DfT report). A total 

monetary cost for driving to a site was taken by adding the time costs to the fuel costs for the return 

journey. 

For walking options, that same DfT report indicates a value of travel time of 7.6 p per min or £4.58 

per hour. While a linear opportunity cost of time in walking might hold true over reasonably short 

trips, for longer walking trips an escalating value of time, similar to that identified for driving time 

costs, is likely more realistic. Accordingly we transformed walking travel times to a cost of travel 

using the following function: 

𝑡𝑖𝑚𝑒 𝑐𝑜𝑠𝑡 = (exp(ℎ𝑟𝑠 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒) − 1) ∗ £4.58 

That specification ensures that the cost of travel time progressively escalates with increasing travel 

time with the marginal cost of time taking the value £4.58 for an hour long trip (e.g. half an hour 

there and back) and increasing exponentially thereafter. Since the exponential function resulted in 

some very large cost of travel time for those respondents whose choice sets included very distance 

sites, we censored travel time costs at a value of £675, an amount which approximates 5 hours 

walking time.  

5. The Econometric Model 

5.1 Econometric Specification 

Our approach to estimating a recreational demand model adopts the long-established random utility 

framework first proposed by McFadden (1973). That framework characterises recreational decisions 

as discrete choices in which, on any particular choice occasion, an individual has the opportunity to 

https://github.com/RoutingKit/RoutingKit
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visit one of an array of sites each offering different opportunities for outdoor recreational activities. 

In essence, the modelling approach seeks to establish the value of the recreational opportunities 

offered by sites by observing data recording which particular sites individuals chose to visit given the 

set of sites that they could have possibly visited. 

More formally, our dataset records the outdoor recreational choices of a sample of individuals, 

indexed 𝑖 = 1, 2, … , 𝑁, on each of series of days indexed 𝑡 = 1, 2, … , 𝑇. That recreational choice 

concerns which greenspace to visit where greenspaces are indexed 𝑗 = 1, 2, … , 𝐽 and by which mode 

of transport that greenspace is accessed, indexed ℎ = 1, 2, … , 𝐻. In our application where we assume 

only walking or driving transport modes, 𝐻 = 2. A final option concerns whether to undertake some 

other activity, an option indexed 𝑗 = 0. 

The choice as to which greenspace to visit depends on a number of factors, but two important 

considerations are the quality of the recreational experience offered by a site and the cost in time and 

money of visiting that site. That cost, of course, differs according to the choice of mode of transport. 

In our model, the quality of recreational experience offered by site 𝑗  is determined by the vector of 

site characteristics 𝒙𝒋 and the costs of making a trip to that site using a certain mode of transport, 

𝑡𝑐𝑖𝑗ℎ.  

To construct our econometric model, we first need to posit a function which describes the utility an 

individual will enjoy if they decided to visit site 𝑗 . In line with the vast majority of the literature we 

choose the simple linear approximation; 

𝑣𝑖𝑗ℎ𝑡 = 𝛼𝑗 +  𝒙𝑗𝜷𝟏 + 𝛾(𝐼𝑖,𝑡 − 𝑡𝑐𝑖𝑗)      (𝑗 = 1, 2, … , 𝐽 and ∀𝑖, 𝑡, ℎ) (2)  

where, 𝐼𝑖,𝑡 is individual 𝑖’s per period income, 𝛼𝑗 is a site-specific utility element, 𝜷𝟏 is the vector of 

coefficients describing the marginal utilities of site qualities and 𝛾 is the marginal utility of income. 

Alternatively, an individual may choose not to make an outdoor recreational trip. We give that “no 

trip” option the index 𝑗 = 0, and specify the utility from that option as; 

𝑣𝑖0𝑡 = 𝛼0 + 𝒛𝑖,𝑡𝜷𝟎      (∀𝑖, 𝑡) (3)  

where 𝒛𝑖,𝑡 is a vector capturing characteristics of the time period (e.g. month of the year, day of the 

week) and of the individual (e.g. gender, age, socioeconomic segment) whose importance in 

determining participation in outdoor recreation is captured by the vector of coefficients 𝜷𝟎, while 𝛼0 

is some constant utility associated with choosing not to take a trip to greenspace.  

Adopting the familiar random utility framework, we develop our econometric specification from (2) 

and (3) by constructing the conditional indirect utility function;  

𝑢𝑖𝑗ℎ𝑡 = 𝑣𝑖𝑗ℎ𝑡 + 𝜀𝑖𝑗ℎ𝑡      (𝑗 = 0, 1, … , 𝐽 𝑎𝑛𝑑 ∀𝑖, ℎ, 𝑡) (4)   

where 𝜀𝑖𝑗𝑚𝑡 is an econometric error term introduced to capture the divergence between our model 

of utility (𝑣𝑖𝑗ℎ𝑡) and the individual’s experienced utility (𝑢𝑖𝑗ℎ𝑡). Since the scale on which utility is 

measured is not known, we can make any arbitrary decision as to what quantity represent zero. For 

the purposes of this analysis we set 𝛼𝑗 = 𝛼 = 0 ∀𝑗. Given the very large number of sites in the analysis, 
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this assumption amounts to relegating utility derived from idiosyncratic features of each parks to the 

error term. 

To simplify notation, henceforth we drop the mode and time subscripts. Given that presentational 

simplification, we progress by assuming that individuals choose from the set of options 𝑗 = 0, 1, … , 𝐽, 

selecting that option which gives them the highest utility. Accordingly, the probability of observing 

individual 𝑖 choosing to visit site 𝑘 can be written as; 

𝑃𝑖𝑘 = 𝑃𝑟𝑜𝑏[𝑢𝑖𝑘 > 𝑢𝑖𝑗  ∀ 𝑗 ≠ 𝑘 ]   

= 𝑃𝑟𝑜𝑏[𝑣𝑖𝑘 + 𝜀𝑖𝑘 > 𝑣𝑖𝑗 + 𝜀𝑖𝑗   ∀ 𝑗 ≠ 𝑘 ]  

= 𝑃𝑟𝑜𝑏[𝑣𝑖𝑘 − 𝑣𝑖𝑗  > 𝜀𝑖𝑗 − 𝜀𝑖𝑘   ∀ 𝑗 ≠ 𝑘 ] 

(5)  

Given 𝑣𝑖𝑘 and 𝑣𝑖𝑗  are, given parameters 𝛼0, 𝜷𝟎 and 𝜷𝟏 are deterministic, the probability in (5) is 

determined by the assumptions made regarding the joint distribution of the error terms,  

𝜀𝑖 = [𝜀𝑖0, 𝜀𝑖1, … , 𝜀𝑖𝐽].  

Perhaps the simplest assumption, and one used extensively in the choice modelling literature, is to 

assume that the error terms are drawn from the family of distributions described as Generalised 

Extreme Value (GEV) (McFadden 1978). In that case, the probability in (5) is given by; 

𝑃𝑖𝑗 =  
𝑒𝑣𝑖𝑗+𝑙𝑛𝐺𝑗

∑ 𝑒𝑣𝑖𝑘+𝑙𝑛𝐺𝑘
𝐽
𝑘=1

 (6)  

Where the function 𝐺(∙) follows from the particular assumptions made regarding the join distribution 

of the error terms and must conform to certain properties outlined by McFadden (1978). Also 𝐺𝑗 =

𝜕𝐺 𝜕𝑒𝑣𝑖𝑗⁄ . The simplest form for GEV results from the assuming that; 

𝐺 = ∑ 𝑒𝑣𝑖𝑗

𝑗

  (7)  

Which, from (5), results in choice probabilities that define the familiar multinomial logit (MNL) model; 

𝑃𝑖𝑗 =  
𝑒𝑣𝑖𝑗

∑ 𝑒𝑣𝑖𝑘
𝐽
𝑘=0

 (8)  

The great advantage of the MNL model is the simplicity of calculation of choice probabilities which 

greatly increases computational efficiency in estimating the model parameters. On the other hand the 

MNL model fails to allow for any form of correlation in the error terms of the different options or their 

observed attributes, an assumption that leads to predictions of somewhat implausible substitution 

patterns often referred to as independence from irrelevant alternatives (IIA) (McFadden, Tye et al. 

1977). In effect, the IIA assumption does not allow for the expectation that the addition of a new 

option to the choice set will tend to reduce the probability of choosing options than have attributes 

more like that new option by a greater extent than it will options that are more dissimilar. 

With the ORVal data, there are several dimensions of similarity over options that might determine the 

degree to which individuals regard them as substitutes. One similarity lies is in the type of recreational 

site. Respondents might well see recreational paths as being more similar to each other than other 
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types; for example, beaches. A second possible dimension of similarity concerns the nature of habitats 

encountered while visiting a greenspace.  Again we might expect that greenspaces with more similar 

landcovers, say woodlands, might be seen as being more similar to each other and hence close 

substitutes. Finally, respondents might regard walking options as being more similar to each other 

than they are to driving options. To capture these various possible dimensions of similarity, we defined 

a series of variables that identify each site’s membership of various similarity groups; 

 Type Category: Each recreation site was identified as being a; 

o Path 

o Park 

o Beach 

o Allotment 

o Cemeteries & Graveyards 

 Habitat Category: We took the range of landcovers used to describe sites (see Table 3) and 

organised those into 10 broad categories; 

o Woods 

o Salt Water 

o Fresh Water 

o Natural Grass 

o Managed Grass 

o Agriculture 

o Wetlands 

o Moors & Heath 

o Allotments 

o Cemeteries & Graveyards 

Each site was allocated to a habitat category according to the landcover which constituted 

the largest proportion of that site’s area. 

 Transport Mode Category: Here driving and walking options are identified as being separate 

categories. 

The possibility that options in the same category are considered closer substitutes can be handled 

through an alternative specification of the GEV model where the 𝐺 function is defined as; 

𝐺 = ∑ ( ∑ 𝑒𝜇𝑚𝑣𝑖𝑗

𝑗∈𝐵𝑚

)

1 𝜇𝑚⁄
𝑀

𝑚=0

 (9)  

Here the sites in each distinct category group form the set 𝐵𝑚 and 𝑚 = 1, 2, … , 𝑀 indexes the 

different categories. Notice we have added an additional group, 𝑚 = 0, which has the single member 

consisting of the option not to take a recreational trip. Notice also, the group-specific parameters, 𝜇𝑚, 

which allow for the fact that sites in a category may be similar to each other in some unobserved way. 

As shown by McFadden (1978), this similarity parameter should vary on the range from 1 to ∞. When 

𝜇𝑚 is large then individuals regard the sites in group 𝑚 as very similar and hence treat them as close 

substitutes. In contrast when the 𝜇𝑚 = 1 the sites in the group are considered no more similar to each 

other then they are to any other site; indeed if 𝜇𝑚 = 1 for all 𝑚 (9) reduces to (7) and we are back at 
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the MNL model. Replacing (9) in (6) results in the specification of a GEV known as the nested 

multinomial logit model (NMNL) which is thoroughly reviewed and described in Morey (1999). 

Constraining similarity between sites to be dictated by the dominant landcover ignores the fact that 

each site is actually a mosaic of landcovers such that each site may share similarities with a variety of 

groups. Accordingly we develop one further categorisation variable: 

 Habitat Proportion: Using the same groups as used to identify habitat categories, a series of 

variables capturing the proportion of each recreation site under different habitats. Clearly, 

with this categorisation each site can belong to a number of categories to different degrees. 

 A specification of 𝐺(∙) that accommodates the possibility of membership across multiple categories 

is given by;  

𝐺 = ∑ (∑ 𝛼𝑗𝑚𝑒𝜇𝑚𝑣𝑖𝑗

𝐽

𝑗=0

)

1 𝜇𝑚⁄
𝑀

𝑚=0

 (10)  

(10) differs from (9) with regards to the parameters 𝛼𝑗𝑚 which dictate the ‘share’ of site 𝑗 that should 

be apportioned to similarity group 𝑚, for example, 𝛼𝑗𝑚 could capture the proportion of site 𝑗’s land 

area that is of landcover 𝑚. With this specification, therefore, a site is seen as similar to other sites 

with which it shares landcovers but more similar to sites with which it has more landcover in common. 

Replacing (10) in (6) results in a specification of a GEV model known as the cross nested logit model 

(CNMNL) first proposed by Ben-Akiva and Bierlaire (1999) and reviewed in detail by Bierlaire (2006).  

Compared to other possible GEV specifications, the CNMNL admits rich patterns of substitution 

between greenspaces that reflect the similarities in environmental experience offered by the different 

sites. From (6) we see that the mathematical form of the CNMNL choice probability, while more 

complex than the MNL model, remains reasonably tractable.  

The programme of modelling undertaken in the ORVal extension project involved estimation and 

comparison of a series of GEV models: 

 Multinomial Logit (MNL) model 

 Nested Multinomial Logit (NMNL) model with nests defined by (a) type categories, (b) 

habitat categories and (c) transport mode categories. 

 Cross Nested Multinomial Logit (CNMNL) model with nests defined by (a) habitat proportions, 

(b) landcover proportions and type category and (c) habitat proportions, type categories and 

transport mode categories. In the latter models assumptions need to be made regarding what 

‘share’ of an observation to attribute to the type and mode category.  

In passing we note that the partial derivative in (6) for the CNMNL takes the form; 

𝐺𝑗 =  
𝜕𝐺

𝜕𝑒𝑣𝑖𝑗
= ∑ 𝛼𝑗𝑚𝑒𝑣𝑖𝑗𝑡(𝜇𝑚−1) (∑ 𝛼𝑗𝑚𝑒𝑣𝑖𝑗𝜇𝑚

𝐽

𝑗=0

)

1 𝜇𝑚⁄ −1
𝑀

𝑚=0

 (11)  

such that the choice probabilities can be written as; 
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𝑃𝑖𝑗 =
𝑒

𝑣𝑗+ln𝐺𝑗(∑ 𝛼𝑞𝑚𝑒𝑣𝑞𝜇𝑚𝐽
𝑞=0 )

∑ 𝑒
𝑣𝑘+ln𝐺𝑘(∑ 𝛼𝑞𝑚𝑒𝑣𝑞𝜇𝑚𝐽

𝑞=0 )𝐽
𝑘=0

 (12)  

Where the notation 𝐺𝑗(∑ 𝛼ℎ𝑚𝑒𝑣ℎ𝜇𝑚𝐽
ℎ=0 ) is included to make explicit the fact that the partial 

derivative (11) is a function of a sum across all greenspaces in the choice set. 

One thing to note about the form of CNMNL model shown in (12) and adopted in the ORVal 

Greenspace Model is that it makes no accommodation for the fact that our data contains observations 

of the same individual making choices across multiple choice occasions.2 

Given data on the recreational choices of the 𝑁 individuals in 𝑇 time periods, it follows from (12) that 

the log of the likelihood of observing those choices is; 

𝑙𝑛 𝐿(𝛼0, 𝜷𝟎, 𝜷𝟏, 𝛾, 𝝁) = ∑ ∑ ∑ 𝑌𝑖𝑗𝑡 𝑙𝑛 𝑃𝑖𝑗𝑡

𝐽

𝑗=0

𝑇

𝑡=1

𝑁

𝑖=1

 (13)  

Where 𝑌𝑖𝑗  is a dummy variable which takes the value 1 if individual 𝑖 chose recreational option 𝑗, or 

zero otherwise and 𝝁 is the vector of similarity parameters. The parameters of the model can be 

estimated using maximum likelihood methods by optimising (13) with respect to the parameters 

𝛼0, 𝜷𝟎, 𝜷𝟏, 𝛾 and 𝝁.3 

Given the size of the dataset a significant programme of code development was undertaken to ensure 

the models could be estimated in a reasonable time. In particular, the models were written in C++ 

with the compiled estimating code achieving speed ups of some 30 to 50 times code written in a 

standard econometric matrix programming language. 

5.2 Welfare Estimation 

As shown in equation (5), an important feature of GEV models is that they are firmly based on a theory 

of random utility maximisation. Indeed, provided empirical estimation of the model results in 𝜇𝑚 ≥

1 (𝑚 = 0,1, … , 𝑀) in the NMNL and CNMNL, then the model is globally consistent with that theory 

(Kling and Herriges 1995).  

One useful property of GEV models that follows from that fact, is that there exists a simple closed-

form expression for the expectation of the maximum utility a respondent might expect to derive from 

being able to choose an option from their choice set. In the case of the CNMNL model that expression 

amounts to; 

                                                           
2 Note that subsequently we employ clustered robust standard errors to account for the lower information 
content provided by repeated responses from the same individual. 
 
3 Under two circumstances the MENE data records that the respondent has taken a trip on that choice 
occasion but does not record which greenspace was the visited. First, for days in the respondent’s week-long 
dairy record where a trip was taken but that choice occasion was not randomly selected as the focus trip. 
Second, where we were unable to identify the location of the focus trips (see Section 4.2). On those occasions 
all we know is that the respondent chose to take a trip to some greenspace or, put another way, decided not 
to choose the outside option indexed 0. Accordingly, under both those circumstances, we record the 
probability of the choice as 1 − 𝑃𝑖0𝑡 
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𝑉𝑖𝑡(𝐽′) = ln ∑ (∑ 𝛼𝑗𝑚𝑒𝑣𝑖𝑗𝑡𝜇𝑚

𝑗∈𝐽′

)

1 𝜇𝑚⁄
𝑀

𝑚=1

+ 𝜆 (14)  

where 𝑉𝑖𝑡(𝐽′) is the expectation of maximum utility realised by individual 𝑖 in time period 𝑡 given the 

opportunity to choose from the choice set 𝐽′, and 𝜆 is the Euler-Mascheroni constant (that takes a 

value of 0.5772 to 4 decimal places).4 

It follows that the expected level of welfare change that an individual would experience if the nature 

of their choice set were to change, perhaps through the loss or gain of sites from the choice set and/or 

changing the qualities of sites (Small and Rosen 1981); 

∆𝑊 =
1

𝛾
(𝑉𝑖𝑡(𝐽′′) − 𝑉𝑖𝑡(𝐽′)) (15)  

where 𝐽′ is the original choice set and 𝐽′′ the changed choice set. In simple terms, equation (15) 

describes the analyst’s best estimate of how an individuals’ utility will change as a result of changes in 

the choice set with that quantity translated into money terms by dividing that utility change by the 

marginal utility of income, 𝛾. 

5.3 Econometric Corrections 

The econometric model as defined by (13) fails to correct for a number of features of the data used 

in estimation of the model. IN the first instance, the specification in (13) assumes random sampling, 

where the data used in estimating the ORVal model were drawn using the choice-based sampling 

strategy described in Section 4.3. To correct the likelihood we use the weighted exogenous sampling 

maximum likelihood (WESML) estimator as follows; 

𝑙𝑛 𝐿 = ∑ ∑ ∑ 𝑌𝑖𝑗𝑡𝑤𝑠(𝑗𝑖
∗) 𝑙𝑛 𝑃𝑖𝑗𝑡

𝐽

𝑗=0

𝑇

𝑡=1

𝑁

𝑖=1

 (16)  

where 𝑤𝑠(𝑗𝑖
∗) is the choice-based sampling weight defined in (1). In effect the weight acts to correct 

the log likelihood function, decreasing the importance of observations that have been over-sampled 

in drawing a choice-based sample and increasing the importance of observations that have been 

under-sample. Manski and Lerman (1977) show that the WESML estimator provides consistent 

estimates of the model parameters. 

A second issue with the ORVal model data set is the sampling of sites for inclusion in the choice set 

for each sample respondent. Recall from (6) that the GEV probability for choice option 𝑗 takes the 

form of a relatively simple proportion relating the utility from a visit to site 𝑗 to an aggregations fo 

the utilities of visits to all sites in the choice set. More specifically, in the CNMNL model the 

numerator of the probability is the exponentiated utility from a visit to site 𝑗 plus a term that 

captures the degree of similarity of that site to others in the choice set, while the denominator is the 

                                                           
4 The derivation of this formula arises from interpreting the conditional indirect utilities of each option (see 
equation (6)) as random variables and calculating the expected maximum of that set. 
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sum of exponentiated utilities plus similarity terms for the entire choice set. Clearly, when we use a 

sample of options in the choice set two errors arise in the choice probability. First, the ratio of 

numerator to denominator is biased since we fail to sum over the full choice set in the denominator. 

Second the similarity term is biased since it fails to aggregate over all sites similar to site 𝑗.  

To address these biases, Guevara and Ben-Akiva (2013) propose a correction to the choice 

probability of the form; 

𝑃𝑖𝑗 =
𝑤𝑖𝑗

1 𝑒
𝑣𝑖𝑗+ln�̂�𝑗(∑ 𝑤𝑖𝑞

2 𝛼𝑖𝑞𝑚𝑒𝑣𝑞𝜇𝑚
𝑞∈�̃�𝑖

2 )

∑ 𝑤𝑖𝑘
1 𝑒

𝑣𝑖𝑘+ln�̂�𝑘(∑ 𝑤𝑖𝑞
2 𝛼𝑖𝑞𝑚𝑒𝑣𝑞𝜇𝑚

𝑞∈�̃�𝑖
2 )

𝑘∈𝐽𝑖
1

 (17)  

where the weights 𝑤𝑖𝑗
2  (𝑗 ∈ 𝐽𝑖

1) are calculated as per (1) to reflect the relatively probability of an 

alternative appearing as one of the options in the sampled choice set, 𝐽𝑖
1. Likewise 𝑤𝑖𝑞

2  corrects the 

aggregation over sites that appears in the similarity terms. Accordingly, we denote these similarity 

terms by the functions �̂�𝑗(∙) to make clear that the aggregation over choice sets used in their 

calculation is an estimate based on the choice set sampling weights, 𝑤𝑖𝑞
2  (𝑞 ∈ 𝐽𝑖

2). Notice that as per 

the recommendation of Guevara and Ben-Akiva (2013) we sample a second set of options to form 

the choice set used to calculate the similarity terms, 𝐽𝑖
2 and the weights 𝑤𝑖𝑞

2  are calculated from this 

sample as per (1). 

5.4 Covariate Choice 

The final step in developing the ORVal recreation demand model is to determine the set of 

covariates that will be used to describe the participation choice, 𝒛𝑖,𝑡  (𝑖 = 1, … , 𝑁, 𝑡 = 1, … , 𝑇), and 

those to be used to describe the utility benefits of a trip to a site 𝒙𝑗(𝑗 = 1, … , 𝐽). 

In the model, the choice of whether to take a trip or not was made a function of three groups of 

variables; those that described the time when the trip was taken, those that described the location 

of residence of a respondent, and those that described a respondent’s socio-demographic 

characteristics;  

1. Time: We captured the time dimension through a set of dummy variables for the year (using 

2009) as the base case, a set of dummy variables for month of the year (using December as 

the base case) and a set of dummy variables for day of the week (using Monday as the base 

case). As part of the ORVal extension project we also introduced a dummy variable 

identifying Bank Holidays. 

2. Location: Location of residence was represented by a set of dummy variables coding for a 

respondent’s Government Office Region (GOR) using the East Midlands as a base case. As 

part of the ORVal extension project a dummy variable was introduced to identify residents 

of urban areas from those in rural areas. 

3. Sociodemographics: A key consideration in defining variables to describe a respondent’s 

sociodemographic characteristics was the subsequent need to transfer the ORVal recreation 

demand model to predict the behaviour of all (adult) individuals in England and Wales. 

While the MENE survey collected numerous details of the sociodemographics of the survey 

respondents, our information for the wider population is limited to data provided by the 
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2011 census and collated at the level of Lower Super Output Area (LSOA). Accordingly, our 

selection of variables by which to describe the sociodemographics of respondents was 

restricted to those provided in both the MENE survey and the 2011 census. In particular, we 

defined dummy variables identifying age-gender groups, individuals with children, working 

status, and socioeconomic segment (using the six category – A, B, C1, C2, D, E - 

socioeconomic classification produced by the ONS). While ownership of a dog was not 

recorded in the census we included this as a covariate and used data from elsewhere to 

approximate that value in the transfer exercise. As part of the ORVal extension project, a set 

of variables indicating the ethnicity of the respondent were included in the model 

specification. Those categories identified White, from Black, from Asian, from Mixed 

ethnicity with other racial groups falling into an ‘Other’ category. 

As shown in (2), we assume that the utility derived from visiting a greenspace comprises the trade-

off between a cost and a benefit.  The cost comes in the form of the time and travel expenses 

incurred in getting to and from that greenspace; the travel cost, 𝑡𝑐𝑖𝑗, calculated as explained in 

Section 4.5. The benefits, it is assumed, are derived from the various qualities of the greenspace. We 

capture those qualities through a series of sets of covariates; 

4. Greenspace Type: To establish differences in utility offered by different broad categories of 

greenspace, we created a dummy variable set distinguishing paths from beaches, from 

country parks, from allotments from graves/cemeteries leaving other parks (see definition in 

Section 3.3) as the base case. 

5. Size and Landcover Composition: The nature of the greenspace with which an individual 

interacts when visiting a site is captured in the ORVal greenspace model through a series of 

variables that record the natural log of the total area of the greenspace (in hectares), and 

the natural log of the areas of each landcover from which that greenspace is composed. 

With regards to the latter we identify the area (in hectares) of each park dominated by the 

following 13 landcover types; 

o Woods 
o Wood Pasture 
o Agriculture 
o Natural Grass 
o Moors 
o Coastal 
o Saltmarsh 
o Marsh & Fen 
o Recreational Grass 
o Sports Pitches 
o Gardens 
o Allotments 
o Cemeteries 

Each landcover is represented in the specification through three variables. First we include 
dummy variables that identify sites for which a landcover type is the dominant landcover. 
Subsequently, we take the natural log of the total area of the recreation site and multiply 
this by the proportion of that area under a landcover giving a measure. That variable is 
introduced into the model in two forms; one as a variable specific to path recreation sites 
and the other as a variable specific to park recreation sites. 
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In a similar vein, we identify three different types of water area to be found in recreation 
sites: 

o Sea 
o Estuary 
o River 
o Lake 

Again we introduce each of these water variables into the model through three variables; a  

constant for sites whose dominant habitat is one of the water area types plus park and path 

specific variables identifying the proportion of the natural log of total water area for a site 

under each of the water types. 

In addition to the quantities of different land and water covers, the specification includes a 

variable which describes the diversity of landcovers accessible from a greenspace calculated 

using Simpson’s Index of Diversity. In particular, we calculate the proportion of a greenspace 

under each land cover type according to; 

𝑝𝑟𝑜𝑝𝑙,𝑗 =
𝑎𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑙𝑎𝑛𝑑𝑐𝑜𝑣𝑒𝑟 𝑙 𝑎𝑡 𝑠𝑖𝑡𝑒 𝑗

𝑡𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠𝑖𝑡𝑒 𝑗
    (𝑙 = 1, … , 𝐿; 𝑗 = 1, … , 𝐽) (18)  

We then calculate the diversity index as; 

𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦𝑗 =
1

∑ 𝑝𝑟𝑜𝑝𝑙,𝑗
2𝐿

𝑙

    (𝑗 = 1, … , 𝐽) (19)  

Observe that the lowest possible value of the index is 1 where the greenspace has only one 

landcover but increases in the number of landcovers accessible at that site. For example, 

with two land covers the index can take a value in the range 1 to 2, where an index near 1 

would indicate only a small part of the greenspace having the second landcover and an index 

of 2 would arise when the greenspace has equal areas of the two landcovers. Likewise, with 

three landcovers the index can take a value in the range 1 to 3 with the upper bound again 

identifying an equal split of area between the three landcovers. 

6. Commonalities: One complication with the definition of greenspaces is in defining what 

constitutes an independent recreation site, for example in circumstances where the ORVal 

greenspace map identifies greenspaces that share common boundaries (though see section 

4.15 of the ORVal Greenspace Map Report). Ignoring the fact that a greenspace borders 

another greenspace may understate its qualities since individuals visiting that site may also 

take advantage of the greenspace provided by the adjoining site. In that case, we might 

think that commonalities between the borders of greenspaces might indicate 

complementarities not otherwise captured in our model. 

For path sites, defined as access points to a path network, the issue of commonality is likely 

to act in the opposite direction. In this case we define the commonality to be the area of 

overlap in the path network accessible from a particular access point. Where multiple path 

sites access the same path network then those different sites are likely to represent close 

substitutes. Accordingly, we might expect that a path site with more commonalities (and 

hence more close substitutes) will receive fewer visits than for an identical path site with no 

commonalities. 
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The issue of commonalities has received attention in the transport literature concerned with 

route choice. In the ORVal model we adopt the proposal of  Cascetta, Nuzzolo et al. (1996) 

where they define a variable that captures the degree of commonality for option according 

to; 

𝐶𝐹𝑗 = ln ∑ (
𝐿𝑗𝑘

𝐿𝑗
1 2⁄

𝐿𝑘
1 2⁄

)

𝜌

𝑘

 (20)  

Where 𝐶𝐹𝑗 is the commonality factor for option 𝑗, 𝐿𝑗𝑘 is the extent of commonality between 

site 𝑗 and site 𝑘, 𝐿𝑗 is the total extent of site 𝑗, 𝐿𝑘 is the total extent of site 𝑘 and 𝜌 is a 

parameter that we set to the value 1 in calculation of the commonality factors. In the case of 

parks, the extent of a site is taken to be its perimeter and the extent of commonality with 

another park is the extent of that perimeter that lies within 25m of that other park. In the 

case of paths, the extent of a site is taken to be the linearly decayed area of path accessible 

from a path access point,  and the commonality with another access point is the extent of 

that area accessible from that other access point. 

7. Designations: The ORVal greenspace map records a variety of special designations given to 

the different recreational sites. For the purposes of the ORVal model we assume that those 

designations may capture aspects of the environmental experience of visiting a greenspace 

that are not captured by descriptions of type or landcover. Accordingly we define a series of 

binary variables identifying sites with the following designations. 

o National Park 
o AONB 
o CROW 
o Heritage Coast 
o Historic Park 
o Millennium or Doorstep Green 
o Nature 

Note that the ‘Nature’ category includes designation as a local nature reserve, national 
nature reserve, a Natura2000 site, a RAMSAR site, SSSI and ancient woodlands. 

We include the designations in the model in proportions; that is to say, as the proportion of 
the recreation site under each designation. 

 

8. Points of Interest: The final set of variables used to describe the quality of greenspaces are a 

set of binary variables identifying the presence of a series of possible points of interest; 

o Archaeology 
o Historic Building 
o Scenic Feature 
o Playground 
o Viewpoint 

 

Since we suspected that the recreational experience associated with a path-type site may differ from 

that of a park-type site (see definitions in Section 3.3) we define separate sets of site quality 

variables for paths and parks; that is to say, we have one set of size & landcover, commonality, 

designation and points of interest variables defined for parks and another set for paths. 
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6. Results 

6.1 Specification Testing 

An extensive programme of specification testing was undertaken in order to inform on the most 

appropriate form for the ORVal recreation demand model. In the first instance that involved 

experimenting with the appropriate selection of covariates and the functional form of the indirect 

utility functions for participation in outdoor recreation (Equation 3) and mode and site choice 

(Equation 2). The functional forms arrived at through that investigation included 63 variables 

describing the participation choice and 86 describing site and mode choice. 

Before describing in detail the parameter estimates on those covariates, we begin by considering the 

question of which form of GEV model best captures patterns of similarity between recreation 

options. Table 9 lists out various measures of model fit across a range of GEV specifications. 

Table 9: Fit statistics for different model specifications 

Model 

In Sample Out-of-Sample 

Choice Choice Participation 

Conditional 

Mode & 

Site Choice 

Conditional 

Mode 

Multinomial Logit:      

Constants: -372,808.28 -31,832.80 -16,715.53 -15,125.76 -975.88 

Constants & TC -290,233.54 -25,966.39 -17,191.97 -8,782.75 -904.32 

Full  -256,007.94 -23,536.09 -15,580.55 -7,962.36 -862.62 

Nested Logit:      

Habitats -254,102.87 -24,349.82 -16,466.77 -7,888.49 -853.95 

Type -254,219.93 -24,759.59 -16,828.10 -7,936.77 -854.64 

Mode -253,235.22 -36,346.49 -28,016.30 -8,332.83 -1,379.90 

Cross-Nested Logit:      

Habitats -253,750.81 -24,286.87 -16,405.29 -7,887.07 -851.26 

Habitats  & Type -253,249.47 -24,743.72 -16,890.64 -7,858.26 -854.88 

Habitats, Type & Mode -252,160.33 -25,981.77 -18,174.67 -7,811.56 -874.92 

 

In-Sample Goodness of Fit 

The first column of Table 9 shows the in-sample fit of each model. What is reported here is the 

maximised value of the log likelihood, that is to say, a statistic showing the log of the probability that 

the model assigns to observing the set of choices made by the respondents in the estimation 

dataset. The larger the log likelihood (that is, the closer the statistic is to zero) the better job the 

model does at matching those observed choices. 

The first model in Table 9 is a simple MNL model in which we include just a single constant to 

capture preferences for taking a trip as opposed to choosing the outside option, a single constant to 
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capture preferences for walking over driving and a set of four constants to distinguish preferences 

for paths, beaches, cemeteries and allotments over parks. This is our minimal specification against 

which to compare more sophisticated specifications. 

The second MNL model in Table 9, adds in just two more covariates; the travel costs associated with 

travelling to a site by car and the travel costs associated with walking. Notice the very substantial 

increase in log-likelihood score from -372,808 to -290, 233. Not surprisingly, recreational choices are 

very significantly determined by the costs of travelling to sites; we can explain the observed 

recreational choices significantly better when we account for those costs. 

The final MNL model in Table 9 includes the full set of 149 preference function covariates. Again we 

observe a highly significant increase in the goodness of fit of the model to the estimating dataset. It 

appears that the variables that we include to characterise participation, mode and site choice 

significantly improve the model’s ability to distinguish between the estimation sample’s observed 

choices. 

The remaining models in Table 9 use the full set of preference function covariates but instead 

examine different form of GEV model to explore specifications which better capture patterns of 

similarity between sites. 

The nested multinomial logit (NMNL) models ascribe options to particular similarity groups; for 

example, the NMNL Habitats model groups options into an outside option group and 10 habitat groups 

ascribing each recreational site option to the group of their dominant landcover. Likewise the NMNL 

Type model groups recreational sites by type categories (paths, parks, beaches, allotments, 

cemeteries & graveyards) while the NMNL Mode model groups together the walking options for each 

recreational site and the driving options for each recreational site. Without presenting the results in 

detail, the similarity parameters (𝜇𝑚 from Equation 9) for each of these models are greater than 1 

thus conforming to expectations from maximum utility theory and the majority are statistically 

significantly greater than 1. 

Notice that the NMNL models each deliver an in-sample goodness of fit superior to the MNL model; 

likelihood ratio statistics show these to be highly significant at greater than the 99.9% confidence level. 

Notably accounting for similarity between modes leads to the highest log likelihood amongst the 

NMNL models of -253,235. Accordingly, the models suggest that accounting for patterns of similarity 

between options are important in explaining the choices of the estimation sample with an increased 

tendency to substitute within travel mode type providing the most significant increase in fit of the 

model. 

The last three rows of Table 9 report details of Cross-Nested Multinomial Logit (CNMNL) specifications 

which allow for cross-nesting, that is to say, allow options to be part of more than one similarity group. 

Each option’s membership of the different similarity groups is determined by the 𝛼𝑗𝑚 parameters of 

Equation 10. Those parameters are proportions such that summing 𝛼𝑗𝑚 across the different groups 

(𝑚) for an option (𝑗) returns a value of 1. In the CNMNL habitat model, for example, the 𝛼𝑗𝑚 are 

calculated as the proportion of the recreation site’s area in the different habitat groups.  

The second CNMNL model introduces the site type categories alongside the habitat proportions. In 

the model reported in Table 9, we impose the assumption that half of an option’s group membership 

is determined by type and half by habitat proportions. In other words, for each option we ascribe a 
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proportion of 0.5 to that option’s type category and then multiply its habitat proportions by 0.5 such 

that the 𝛼𝑗𝑚 for each option still sum to 1. The final CNMNL model of Table 9 adds membership of 

mode categories to the type categories and habitat proportions. Again we adjust membership 

proportions through the assumption that a third is dependent on mode, a third on type and a third on 

habitat.5 

With regards to in-sample goodness of fit, the log likelihoods of each of the CNMNL models 

outperforms the NMNL models for habitat and type similarity groups. One thing to note is that the 

models tend to fit the estimation data set better when similarity between sites reflects each site’s 

range of habitats rather than just each site’s dominant landcover. For example, a site that is mostly 

woodland but part managed grass is better modelled as being both more similar to sites with 

woodland and to sites with managed grass than it is as being modelled as being more similar to just 

other sites with majority woodland landcover. 

It is notable from Table 9 that only the CNMNL model with habitat, type and mode similarity groups 

provides a better fit to the estimation data set than that provided by the NMNL model with just mode 

categories, an observation that reinforces our initial assessment that accounting for similarity of travel 

mode options is important in improving in-sample goodness of fit. Indeed, with regards to in-sample 

fit the best model of those explored is the CNMNL model with habitat, type and mode similarity 

groups. 

Out-of-Sample Goodness of Fit 

Of course, the degree to which a model fits the data from which it is estimated is only one measure 

of its quality. Since the ultimate purpose of the ORVal model is to predict recreational choices 

perhaps a more important measure of quality is the degree to which the model is able to predict the 

recreational choices of observations outside the dataset. Indeed, when comparing the performance 

of different models applied to the same data, out-of-sample validity is considered as important a 

criterion by which to judge quality as model fit.  

Several methods of out-of-sample testing are available. The procedure we adopt here is to draw a 

second sample of 5,012 observations from those observations in the MENE not selected for the 

estimation data set. Again we adopt a choice-based sampling strategy to ensure that our testing 

dataset covers the spectrum of recreational decisions and subsequently reweight our fit statistics to 

reflect the population. Unlike the estimation dataset, our out-of-sample predictions are not 

estimated using an importance-sampled choice set. Rather for each observation we include the full 

choice set including travelling to the 138,621 recreational sites by car and travelling to those same 

sites on foot. Prediction for each observation, therefore, requires execution of 277,242 routing 

queries, a time-consuming execution made practical only through application of the contraction 

hierarchy routing software RoutingKit. As per our in-sample testing, the out-of-sample test statistics 

                                                           
5 We experimented with specification of the cross-nested logit model in which the proportions attributed to 
the habitat, type and travel mode similarity sets were estimated from the data. We found those models to be 
unstable, converging on a corner solution in which the entire weight was apportioned to the set containing the 
fewest similarity groups. In a model with habitat and type sets the model converged on a maximum where all 
weight was attributed to the three similarity groups defined in the type set and in a model with habitat, type 
and mode sets the model converged on a maximum with all weight attributed to the two similarity groups in 
the travel mode set.  
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we report are log-likelihoods; that is to say, a measure of the log of the probability our model 

ascribes to observing the choices made by respondents in the out-of-sample data set.  

The final four columns of Table 9 record those out-of-sample fit statistics. The first column records 

out-of-sample model fit to the recreational choices made by respondents in the out-of-sample 

dataset. The second column focuses just on the participation decision; that is to say, the success of 

the model in predicting the daily decisions of respondents as to whether to make an outdoor 

recreation trip. The third column focuses on the conditional site and mode decision; that is to say, 

the model’s ability to predict the choice over mode and site given a respondent has chosen to taken 

an outdoor recreational trip. The final column reports out-of-sample fit measures for the conditional 

choice of mode; that is to say, the choice of which mode of travel to use conditional on having 

elected to make a trip. 

Scanning down the out-of-sample fit statistics for recreational choices the most striking result is that 

the model demonstrating the best predictive capability is the MNL model with fully specified 

preference function, a model that demonstrated relatively poor in-sample fit compared to NMNL 

and CNMNL models. What is more, the model showing the very worst out-of-sample predictive 

capability is the NMNL with travel mode similarity groups, a model that on the basis of in-sample fit 

had performed particularly well. Indeed, that poor out-of-sample performance carries over to the 

CNMNL with habitat, type and mode similarity groups, our best-performing model with regards to 

in-sample fit.  

More clarity over why the NMNL and CNMNL models with mode choice as a similarity grouping 

perform so badly out-of-sample can be found by studying the out-of-sample predictions for 

Participation and for Mode/Site choice. The models with ‘mode’ similarity groups do particularly 

badly in predicting participation (over-predicting the likelihood of taking a trip) but, for the CNMNL 

model at least, do quite well at predicting the conditional choice of mode and site. 

Of the NMNL models, the model with habitat similarity groups outperforms the other specifications 

on all out-of-sample measures of goodness of fit. IN terms of out-of-sample fit the CNMNL 

specification with just habitat similarity groupings performs very similarly to the NMNL model across 

all measures. Moreover, that relatively simple CNMNL specification is better than the more complex 

CNMNL specification across most out-of-sample fit measures. 

Going forward, therefore, our discussion of parameter estimates will focus on the full MNL model, 

the NMNL model with habitat similarity groups and the CNMNL model with habitat similarity groups 

since these specifications appear to provide the best overall performance in predicting out-of-

sample recreational choices. Of these three models, CNMNL model gives the best in-sample fit and 

the MNL the worst with the NMNL taking the middle spot. In contrast, the MNL model gives the best 

out-of-sample fit and the CNMNL model the worst, with the NMNL model again taking the middle 

spot. Underpinning the differences in out-of-sample fit is the fact that the MNL model does a better 

job than the other two models at predicting participation. At the same time, conditional on taking a 

trip we find that the NMNL and CNMNL do a better job at predicting which site will be visited and by 

which mode of transport.  

Accordingly, no one model can be said to dominate in terms of fit statistics and we turn to an 

investigation of the parameter estimates to further inform our selection of model. 
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6.2 Parameter Estimates 

We report the parameter estimates in a series of groups. Note that, since the key function of the 

estimated model is to predict how recreational activity and the welfare it generates might change as 

the quality and availability of greenspaces is varied, the model was estimated imposing constraints 

on the signs that could be taken by coefficient estimates. For example, we suppose that adding more 

expanse to a site of any particular natural land cover cannot decrease the utility offered by that site. 

Accordingly, we constrain the parameter estimated on areas of habitat cover to be non-negative. 

Likewise we suppose that endowing a greenspace with some designation should not reduce the 

benefits it affords visitors and hence we again constrain designation parameters to the positive line. 

Pariticpation – Weather 

Table 10 is the first of a series of tables reporting parameter estimates for the indirect utility 
function describing choice of the outside option. Accordingly, positive parameters should be 
interpreted as indicating that that variable increases the likelihood of choosing the outside option 
while negative parameters indicate that that variable increases the likelihood of choosing to take a 
recreational trip. Table 10 focuses on covariates describing the weather at a respondent’s home 
location on each of the seven days for which their recreation decisions are recorded in the MENE 
data (each day is the unit of choice occasions in our analysis).  

Table 10: Parameter estimated for Participation Choices - Weather 

Parameter MNL 
NMNL 

(Habitat) 

CNMNL 

(Habitat) 

Rain (mm per day) 
0.0038*** 

(3.038) 

0.0035*** 

(2.843) 

0.0036*** 

(2.873) 

Rain Squared 
-0.0126 

(-1.562) 

-0.0113 

(-1.41) 

-0.0115 

(-1.445) 

Temperature (mean daytime) 
-0.0163** 

(-2.407) 

-0.0146** 

(-2.183) 

-0.0142** 

(-2.112) 

Temperature Squared 
0.0701 

(0.339) 

0.0052 

(0.025) 

-0.0124 

(-0.061) 

Notes: Statistics report the coefficient estimate with the robust standard error below in brackets. Coefficients 
significant at the 90% level are highlighted with ***, those at the 95% level with ** and those at 99% at *. 

The parameters for each of the three models paint a broadly similar picture, respondents tend to 
choose the outside option significantly more often the greater the quantity of rain. In contrast, 
participation in outdoor recreation increases with temperature. The squared terms on the two 
weather measurements prove not to be significant in any of the three models. 

Participation – When? 

Table 11 reports parameter estimates on covariates capturing temporal influences on participation. 
The first parameter, labelled ‘constant’ captures the baseline likelihood of choosing the outside 
option. Notice these parameters are large in absolute magnitude suggesting that, holding everything 
else constant, respondents tend to choose the outside option significantly more frequently than 
they choose to take a recreational trip to an outdoor location. Notice that across the three models 
the magnitude of the constant falls as we move to models that allow for increasing levels of 
similarity between options. The mathematical underpinning of that observation is that allowing for 
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similarity acts so as to effectively reduce the apparent size of the choice set – in the extreme a group 
with a very large similarity parameter is regarded by respondents as a single option (each of the 
options in that group are perfect substitutes for one another). Notice from (6) that the probability of 
choosing the outside option takes the form of a ratio; the ratio relating the exponentiated utility of 
the outside option to the exponentiated utilities summed for all sites in the choice set. Accordingly, 
the greater the level of similarity in options the smaller the sum in the denominator of that ratio and 
hence, the smaller the constant required to capture preferences for the outside option,  

For the remaining covariates the parameters for each model paint a broadly similar picture. 

 Participation is significantly higher on Bank Holidays.  

 Once accounting for weather and other factors, participation tends to be highest in 
February, March and June and lowest in September, November and December.  

 Likewise, participation is highest on Saturdays and Sundays, and lowest on Mondays. 

Table 11: Parameter estimates for Participation Choices - When? 

Parameter MNL 
NMNL 

(Habitat) 

CNMNL 

(Habitat) 

Constant 
9.0778*** 

(30.286) 

8.761*** 

(19.725) 

8.0589*** 

(28.751) 

Bank Holiday 
-0.2564*** 

(-6.876) 

-0.2588*** 

(-7.025) 

-0.2589*** 

(-7.016) 

2009 0 0 0 

2010 
0.1902*** 

(4.841) 

0.1942*** 

(5.008) 

0.1931*** 

(4.972) 

2011 
0.1267*** 

(3.14) 

0.1249*** 

(3.184) 

0.1289*** 

(3.275) 

2012 
0.0765* 

(1.881) 

0.0783** 

(1.983) 

0.0818** 

(2.063) 

2013 
0.0552 

(1.363) 

0.051 

(1.299) 

0.0546 

(1.386) 

2014 
0.0307 

(0.782) 

0.0325 

(0.854) 

0.0363 

(0.95) 

2015 
0.0093 

(0.235) 

0.0151 

(0.392) 

0.021 

(0.544) 

2016 
0.1629** 

(2.103) 

0.1733** 

(2.273) 

0.1818** 

(2.373) 

Jan 
-0.1364** 

(-2.51) 

-0.1269** 

(-2.36) 

-0.1287** 

(-2.389) 

Feb 
-0.1946*** 

(-3.51) 

-0.1859*** 

(-3.392) 

-0.1869*** 

(-3.406) 

Mar 
-0.1685*** 

(-3.146) 

-0.1657*** 

(-3.13) 

-0.1682*** 

(-3.173) 
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Apr 
-0.1622*** 

(-2.971) 

-0.1569*** 

(-2.91) 

-0.1579*** 

(-2.923) 

May 
-0.0972* 

(-1.714) 

-0.0947* 

(-1.689) 

-0.0954* 

(-1.699) 

Jun 
-0.1574*** 

(-2.647) 

-0.1473** 

(-2.505) 

-0.1487** 

(-2.525) 

Jul 
-0.0979 

(-1.574) 

-0.0851 

(-1.384) 

-0.0871 

(-1.415) 

Aug 
-0.0979 

(-1.594) 

-0.09 

(-1.483) 

-0.0899 

(-1.479) 

Sep 
-0.0481 

(-0.794) 

-0.0374 

(-0.624) 

-0.044 

(-0.733) 

Oct 
-0.1224** 

(-2.127) 

-0.1182** 

(-2.081) 

-0.1201** 

(-2.108) 

Nov 
-0.0494 

(-0.893) 

-0.0431 

(-0.789) 

-0.0439 

(-0.801) 

Dec 0 0 0 

Mon 
0.5635*** 

(32.925) 

0.5595*** 

(32.95) 

0.5603*** 

(32.95) 

Tue 
0.6372*** 

(37.526) 

0.6321*** 

(37.522) 

0.6331*** 

(37.528) 

Wed 
0.5992*** 

(35.589) 

0.5944*** 

(35.588) 

0.5953*** 

(35.591) 

Thu 
0.5651*** 

(33.846) 

0.5608*** 

(33.856) 

0.5616*** 

(33.857) 

Fri 
0.5558*** 

(33.421) 

0.5517*** 

(33.437) 

0.5524*** 

(33.438) 

Sat 
0.23*** 

(14.951) 

0.2283*** 

(14.965) 

0.2286*** 

(14.963) 

Sun  0 0 0 

Notes: Statistics report the coefficient estimate with the robust standard error below in brackets. Coefficients 
significant at the 90% level are highlighted with ***, those at the 95% level with ** and those at 99% at *. 

 

Figure 5 illustrates the parameter estimates for the days of the week variables transformed so as to 

indicate preferences to take an outdoor recreation trip. To be clear, Figure 4 plots the negative of 

the parameters rescaled to make Tuesday (the least preferred day for outdoor recreation) the base 

case. Accordingly, the bars in the Figure provide an indication of the relative magnitude of 

preferences for taking a trip on each day of the week. As might be expected, people prefer to take 

trips on the weekend than mid-week.  
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Figure 4: Relative magnitude of preferences to take an outdoor trip on different days of the week 
(base case Tuesday) 

Figure 5 provides a similar illustration for the models’ parameters regarding month of the year. 

Again the plots transform the coefficients from preferences for the outside option to preferences for 

taking a recreation trip, with the month of December acting as the base case. In this case the pattern 

of preferences is not as obviously intuitive as those for days of the week; with preferences 

apparently highest for trips in February, March, April and June. Of course, the key thing to bear in 

mind is that these are preferences once other factors such as rainfall, temperature and bank 

holidays have been accounted for.  

 

Figure 5: Relative magnitude of preferences to take an outdoor trip during different months of the 
year (base case February) 
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Participation – Where? 

Table 12 reports parameter estimates on covariates capturing how a respondent’s home location 

impacts on participation. Remember these are independent effects. That is to say they reflect the 

effect of these covariates once other differences such as patterns of weather and the accessibility of 

greenspaces have been accounted for. We observe that for all three models, participation in outdoor 

recreation is significantly lower amongst residents of urban areas, perhaps reflecting the greater 

availability of alternative forms of recreational activity available in urban areas compared to rural 

areas. We also observe significant differences in outdoor recreation participation across the English 

regions. Participation is highest in the North East and South West, and significantly lower in London. 

Table 12: Parameter estimates for Participation Choices - Where? 

Parameter MNL 
NMNL 

(Habitat) 

CNMNL 

(Habitat) 

Urban 
0.5478*** 

(19.842) 

0.5006*** 

(18.526) 

0.5063*** 

(18.693) 

North East 0 0 0 

North West 
0.4601*** 

(8.345) 

0.2694*** 

(4.985) 

0.3098*** 

(5.696) 

Yorkshire and 

The Humber 

0.3804*** 

(6.713) 

0.2049*** 

(3.685) 

0.2098*** 

(3.746) 

East Midlands 
0.4035*** 

(6.871) 

0.167*** 

(2.887) 

0.151*** 

(2.612) 

West Midlands 
0.4144*** 

(7.222) 

0.1639*** 

(2.881) 

0.1627*** 

(2.87) 

East of 

England 

0.2968*** 

(5.325) 

0.0718 

(1.315) 

0.0572 

(1.05) 

London 
0.947*** 

(16.733) 

0.5669*** 

(10.015) 

0.5865*** 

(10.462) 

South East 
0.3725*** 

(7.028) 

0.1438*** 

(2.749) 

0.139*** 

(2.675) 

South West 
-0.0172 

(-0.318) 

-0.1341** 

(-2.532) 

-0.1496*** 

(-2.83) 

Notes: Statistics report the coefficient estimate with the robust standard error below in brackets. Coefficients 
significant at the 90% level are highlighted with ***, those at the 95% level with ** and those at 99% at *. 

Participation – Who?Table 13 lists parameter estimates on covariates describing how the 

characteristics of individuals impact on participation in outdoor recreation.  

One very clear result is the highly significant impact of dog ownership on outdoor recreation 

participation; people with dogs take more trips to outdoor greenspace than those without. In 

contrast, we do not observe a significant increase in participation amongst individuals with children. 
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Table 13: Parameter estimates for Participation Choices - Who? 

Parameter MNL 
NMNL 

(Habitat) 

CNMNL 

(Habitat & Type) 

Dog 
-1.4695*** 

(-65.315) 

-1.454*** 

(-65.536) 

-1.4562*** 

(-65.47) 

Children 
-0.0157 

(-0.611) 

-0.0161 

(-0.636) 

-0.0169 

(-0.666) 

Segment A 
-0.6779*** 

(-11.471) 

-0.7098*** 

(-12.184) 

-0.7107*** 

(-12.171) 

Segment B 
-0.5687*** 

(-12.67) 

-0.5991*** 

(-13.572) 

-0.6013*** 

(-13.595) 

Segment C1 
-0.3578*** 

(-8.143) 

-0.3809*** 

(-8.805) 

-0.384*** 

(-8.859) 

Segment C2 
-0.1976*** 

(-4.308) 

-0.2132*** 

(-4.719) 

-0.2152*** 

(-4.754) 

Segment D 
-0.06 

(-1.244) 

-0.0698 

(-1.465) 

-0.0695 

(-1.457) 

Segment E 0 0 0 

White 0 0 0 

Mixed 
0.1402 

(1.635) 

0.1263 

(1.483) 

0.1216 

(1.43) 

Black 
0.5039*** 

(8.678) 

0.4876*** 

(8.426) 

0.4854*** 

(8.374) 

Asian 
0.6464*** 

(13.738) 

0.6274*** 

(13.361) 

0.6282*** 

(13.356) 

Other 
0.2718** 

(2.187) 

0.2618** 

(2.126) 

0.2642** 

(2.14) 

Not work 0 0 0 

Part time work 
-0.0177 

(-0.5) 

-0.0253 

(-0.725) 

-0.0255 

(-0.728) 

Full time work 
0.2224*** 

(7.814) 

0.2070*** 

(7.362) 

0.2093*** 

(7.426) 

Female  16-23 0 0 0 

Male  16-24 
-0.1640*** 

(-2.991) 

-0.1589*** 

(-2.934) 

-0.1596*** 

(-2.941) 

Female 25-34 
-0.4328*** 

(-8.23) 

-0.4411*** 

(-8.483) 

-0.4442*** 

(-8.523) 

Male  25-34 
-0.3777*** 

(-6.938) 

-0.385*** 

(-7.152) 

-0.3877*** 

(-7.186) 
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Female 35-44 
-0.414*** 

(-7.744) 

-0.4303*** 

(-8.139) 

-0.4272*** 

(-8.063) 

Male 35-44 
-0.3873*** 

(-6.939) 

-0.3982*** 

(-7.212) 

-0.4004*** 

(-7.237) 

Female 45-54 
-0.3511*** 

(-6.585) 

-0.3634*** 

(-6.889) 

-0.3637*** 

(-6.878) 

Male 45-54 
-0.368*** 

(-6.656) 

-0.3821*** 

(-6.991) 

-0.3822*** 

(-6.98) 

Female 55-64 
-0.4083*** 

(-7.416) 

-0.4191*** 

(-7.695) 

-0.4221*** 

(-7.739) 

Male 55-64 
-0.4012*** 

(-7.176) 

-0.4221*** 

(-7.645) 

-0.4225*** 

(-7.64) 

Female 65+ 
-0.1535*** 

(-2.822) 

-0.163*** 

(-3.028) 

-0.1618*** 

(-2.999) 

Male 65+ 
-0.3646*** 

(-6.712) 

-0.3801*** 

(-7.069) 

-0.3813*** 

(-7.082) 

Notes: Statistics report the coefficient estimate with the robust standard error below in brackets. Coefficients 
significant at the 90% level are highlighted with ***, those at the 95% level with ** and those at 99% at *. 

As illustrated in Figure 6, across all three models the coefficients estimated on socioeconomic 

segment show a clear pattern of increasing participation moving from segment E through to 

segment A. Note that these estimates are the independent effect of socioeconomic segment once 

we have controlled for a variety of confounding factors such as accessibility to recreation areas and 

access to a motor vehicle. Accordingly, the models provide evidence to support the idea that 

outdoor recreation has the properties of what economists call a ‘luxury good’.  

 

Figure 6: Relative magnitude of preferences to take a trip across socioeconomic groups (base case 
segment E) 
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We also observe a strong independent effect from ethnicity; that is to say, having controlled for 

many other socioeconomic characteristics and the accessibility of greenspace, we find that white 

respondents are more likely to engage in outdoor recreation than respondents of mixed race who 

are more likely to participate than black respondents with Asian respondents the least likely to make 

use of outdoor greenspace. 

Significant differences in preferences for participation are also observed across working status with 

full time workers least likely to participate. Likewise we observe interesting patterns of difference 

across gender and age groups. Figure 7 illustrates those patterns with the coefficients transformed 

from preferences for the outside option to preferences for taking a recreation trip. In this case the 

base case is females aged 16 to 24. Indeed it is that age group and particularly amongst females that 

we observe the lowest preferences for participating in outdoor recreation. Between the ages of 25 

and 64 preferences for participation are reasonably similar and also little different across men and 

women. Interestingly, amongst the over 65s while participation preferences remain little changed 

amongst men, we observe a sharp decline in participation in females. 

 

Figure 7: Relative magnitude of preferences to take a trip across age-gender groups (base case 
females 16-24) 

Site and Mode Choice – Travel 

Table 14 is the first table listing covariates included in the model to describe choices over mode of 

travel and site. The parameters shown in Table 14 focus on covariates relating to travel to sites.  

Observe that the dummy variable identifying walking options (in contrast to driving options) are 

positive and significant. Holding everything else constant (including the costs of travel) people are 

more likely to choose to walk to a greenspace for the purposes of recreation than they are to drive. 

The model specification also interacts car options with a dummy variable indicating respondents 

who do not have access to their own private vehicle. Not surprisingly we observe the coefficient on 

that interacted variable to be negative and highly significant. People without their own vehicle are 

very much less likely to travel to a recreation site by vehicle. 
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The parameters on the travel cost for car journeys and walking journeys are, as expected, negative 

and highly significant; people tend to choose to visit sites that entail less travel. Notice that the 

parameter on walking travel costs is around 3 times smaller than that on car travel. We conclude 

that our assumptions regarding the cost of travel time in walking placed too high a cost on walking 

time. 

Finally, in line with the recommendations of the project steering group we introduce separate 

parameters to account for preferences for travel to allotments. The reasoning behind that 

specification is that, unlike the other recreation sites, allotments are essentially private goods 

rationed through an allocation process that restricts access to allotments to certain individuals. As a 

result of that fundamental difference, our specification is such that a full set of parameters are used 

to capture preferences for trips to allotments (and in the nested logit model specifications a 

separate similarity group) that are separate from the parameters used to capture preferences for 

access to other recreation sites. As it turns out the parameters on the costs of travel to allotments 

suggests that trips to allotments are much more frequently taken on foot and that that travel is seen 

as less costly than travel to other types of outdoor recreation site. One might speculate that those 

parameters suggest that that owners of allotments will tend to choose an allotment within walking 

distance of their home and that there decision to visit that location is less sensitive to distance than 

choices between other types of recreation site. 

Table 14: Parameter estimates for Site & Mode Choices – Travel 

Parameter MNL 
NMNL 

(Habitat) 

CNMNL 

(Habitat) 

Car 0 0 0 

Walk 
3.4002*** 

(28.814) 

2.5194*** 

(25.729) 

2.5769*** 

(27.015) 

Car * No Car 
-0.7022*** 

(-13.727) 

-0.7128*** 

(-15.297) 

-0.7188*** 

(-15.352) 

Travel Cost:    

Car 
-0.1948*** 

(-30.214) 

-0.1515*** 

(-28.557) 

-0.1608*** 

(-29.822) 

Walk 
-0.0611*** 

(-9.634) 

-0.0461*** 

(-9.361) 

-0.0504*** 

(-9.656) 

Travel Cost Allotment:    

Car 
-0.5589 

(-1.337) 

-0.3781 

(-1.598) 

-0.3707* 

(-1.653) 

Walk 
-0.0152** 

(-2.132) 

-0.0137*** 

(-3.085) 

-0.0133*** 

(-3.555) 

Notes: Statistics report the coefficient estimate with the robust standard error below in brackets. Coefficients 
significant at the 90% level are highlighted with ***, those at the 95% level with ** and those at 99% at *. 
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Site and Mode Choice – Site Type 

Table 15 reports parameter estimates on covariates that differentiate the site options by broad type 

categories. The first five rows are a dummy variable set with the parks category as the base case and 

paths, allotments, cemeteries and beaches as alternative site types. The general pattern to the 

coefficients is that paths and allotments and cemeteries are less preferred to parks while beaches 

are more preferred. Since these variables pick out dimensions of site characteristics that are also 

important in defining the similarity groups, it is perhaps not surprising that we now begin to see 

some differences across the models. Most notable here are the lack of a significant negative 

coefficient for cemeteries in the NMNL model, and the lack of significant positive coefficient for 

beaches in the CNMNL model. The importance of these differences in prediction is difficult to 

ascertain without specific testing. 

The specification also includes a variable that records the proportion of a site that is within an urban 

area, that being the proportion of a parks border that is adjacent to an urban area and the length of 

a path in an urban area. The MNL returns an insignificant parameter on this variable though those 

on the NMNL and CNMNL suggest a positive influence with that in the NMNL model being significant 

at the 95% confidence level. 

The final two covariates in Table 15 report parameters on the two commonality factors. Observe 

that for all three models the commonality factor on paths is negative and highly significant. Recall 

that the commonality factor records the proportion of the path network accessed from some 

particular path entry point that is also accessed by other entry points included as path sites in the 

data. The negative sign on the path commonality factor, therefore, accords with our expectations 

that a set of path access points serving the same network are considered as close substitutes, 

thereby, reducing the independent value of each. The commonality factor for parks in the MNL and 

CNMNL model is also significant but with the opposite (positive) sign. Again that conforms with prior 

expectations that bordering greenspaces offer complementarities that increase visitation.  

Overall the Site Type variables display some differences across the three models, though no one 

model stands out as resulting in coefficients that better accord with prior expectations. The CNMNL 

model performs well though has an unexpectedly small coefficient on beaches. The NMNL Model is 

very similar but returns a positive (though insignificant) coefficient on cemeteries.  

Table 15: Parameter estimates for Site & Mode Choices – Site Type 

Parameter MNL 
NMNL 

(Habitat) 

CNMNL 

(Habitat) 

Parks 0 
0 0 

Paths 
-0.3794 

(-0.863) 

-1.2201* 

(-1.824) 

-0.6376** 

(-2.224) 

Allotments 
-1.2128 

(-1.437) 

0.1818 

(0.238) 

-0.4831 

(-0.735) 

Cemeteries & Graveyards 
-0.7103*** 

(-2.71) 

0.0251 

(0.051) 

-0.7714*** 

(-2.654) 
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Beaches 
0.8530** 

(2.175) 

0.8036** 

(2.198) 

0.4877 

(1.412) 

Urban (%) 
0.0059 

(0.122) 

0.0879** 

(2.402) 

0.0703* 

(1.867) 

Commonality Factor – path 
-0.6318*** 

(-12.432) 

-0.4278*** 

(-11.41) 

-0.4995*** 

(-13.129) 

Commonality Park - park 
0.0358** 

(2.546) 

0.0143 

(1.473) 

0.0199* 

(1.959) 

Notes: Statistics report the coefficient estimate with the robust standard error below in brackets. Coefficients 
significant at the 90% level are highlighted with ***, those at the 95% level with ** and those at 99% at *. 

Site and Mode Choice – Habitats  

One of the key functionalities of the ORVal tool is to predict the values and visits that might be 

generated by a new recreation site established in a particular location with particular landcovers. 

Accordingly, a crucial feature of the model underpinning those predictions is that it demonstrates 

plausible sensitivity to the extent of different habitats. 

Our data allow for a reasonably detailed description of habitats each site being described by the 

extent of moors & heathland, natural grassland, grassland managed for recreation (such as might be 

found in a municipal park), wetlands including fens & marshes, and woods whose extent is divided 

into standard woods and wood pasture (open woodland with dispersed trees set in a grass land 

setting). As discussed previously, our specification of the choice function allows preferences for each 

site to be determined by a measure of the extent of land under a particular habitat at a site. In 

particular, for each site the extent of habitat type 𝑟 is captured through the variable; 

𝑎𝑟𝑒𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑟 =  
ℎ𝑎𝑏𝑖𝑡𝑎𝑡 𝑎𝑟𝑒𝑎𝑟

∑ ℎ𝑎𝑏𝑖𝑡𝑎𝑡 𝑎𝑟𝑒𝑎𝑞𝑞
× ln (∑ ℎ𝑎𝑏𝑖𝑡𝑎𝑡 𝑎𝑟𝑒𝑎𝑞

𝑞

)     (∀𝑟) 

that is to say, we examine the effect of the habitat composition of each site by including a set of 

variables that indicate the share of the log of the total site area under each habitat. Notice that in 

accordance with our prior expectations the variable is increasing with the addition of an extra unit of 

a habitat to a site but the larger the total site area the smaller the increment realised from the 

addition of that extra unit. 

The preference function specification also includes a set of dummy variables that identify the 

dominant habitat type in each site; that is to say, the habitat with the greatest share of a site’s total 

area. The moors & heathland habitat is taken as the baseline category in that set of dummy 

variables. 

Since it may be possible that preference for habitats differs across different types of recreation site. 

We estimate separate parameters for park- and path-type recreation sites. Table 16 reports 

parameter estimates on covariates describing the habitat landcovers found at park-type sites.  
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Table 16: Parameter estimates for Site & Mode Choices – Habitats in Parks 

Parameter MNL 
NMNL 

(Habitat) 

CNMNL 

(Habitat & Type) 

Moors & Heath: 
   

constant 0 0 0 

area 
0.4447*** 

(6.386) 

0.293*** 

(5.087) 

0.1101** 

(1.994) 

Natural Grass:    

constant 
-0.6530** 

(-2.311) 

-0.0238 

(-0.047) 

0.0688 

(0.285) 

area 
0.4198*** 

(7.101) 

0.3272*** 

(7.417) 

0.3275*** 

(7.328) 

Recreational Grass:    

constant 
-0.6878*** 

(-2.722) 

1.5461*** 

(3.404) 

0.1621 

(0.718) 

area - general grass 
0.3484*** 

(19.652) 

0.2159*** 

(16.324) 

0.2228*** 

(15.906) 

area - sports pitches 
0.1912*** 

(3.652) 

0.1074*** 

(2.943) 

0.1472*** 

(3.577) 

area - formal gardens 
0.5910*** 

(9.314) 

0.4077*** 

(8.58) 

0.4219*** 

(8.572) 

Wetlands:    

constant 
1.0082** 

(2.213) 

0.5038 

(0.828) 

0.3876 

(1.143) 

area 
0.2155 

(1.193) 

0.1772 

(1.282) 

0 

(.) 

Woods:    

constant 
-0.6693*** 

(-2.656) 

1.0112** 

(2.225) 

-0.0081 

(-0.036) 

coniferous 0 0 0 

broadleaf 
0.0989* 

(1.96) 

0.0846** 

(2.307) 

0.0976** 

(2.427) 

felled or young 
-0.8044*** 

(-3.297) 

-0.5451*** 

(-3.178) 

-0.5271*** 

(-2.921) 

area - woodland 
0.4255*** 

(20.575) 

0.3105*** 

(19.066) 

0.3263*** 

(19.279) 

area – wood pasture 
0.6122*** 

(24.296) 

0.4417*** 

(21.432) 

0.4792*** 

(25.133) 

Allotment:    
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constant 
-1.2128 

(-1.437) 

0.1818 

(0.238) 

-0.4831 

(-0.735) 

area 
0.3406** 

(1.985) 

0.1895* 

(1.711) 

0.1927* 

(1.721) 

Cemetery:    

constant 
-0.7103*** 

(-2.71) 

0.0251 

(0.051) 

-0.7714*** 

(-2.654) 

area 
0 

(.) 

0 

(.) 

0 

(.) 

Park Habitat Diversity 
-0.4506*** 

(-4.413) 

-0.3179*** 

(-4.291) 

-0.1113 

(-1.566) 

Notes: Statistics report the coefficient estimate with the robust standard error below in brackets. Coefficients 
significant at the 90% level are highlighted with ***, those at the 95% level with ** and those at 99% at *. 

The first thing to note from Table 16 is that for the MNL and NMNL the continuous covariates on 

habitat extent are mostly positive and significantly different from zero. As we might hope these 

models suggest that the marginal value of habitat is positive; in other words, extra habitat at a site 

has a positive impact on the utility derived from visiting that site. The only exception is the area of 

cemeteries and graveyards where all three models record the corner solution value of zero that is 

imposed by our use of constrained optimisation. With the CNMNL model, the parameter on wetland 

extent also results in a zero coefficient. 

The ordering of the coefficients for the extent of the various habitats is reasonably similar across the 

models. Wood pasture records the highest coefficient suggesting that all else equal the addition of 

an extra unit of this habitat increases the value derived from a recreational site by the most.  The 

marginal values of heathland and natural grassland are the next highest, with woodland, and 

recreational grassland returning somewhat smaller values. The lowest marginal values for habitat 

extent are recorded by allotments, wetlands and sport pitches.  

Of course, the value the model specification attributes to a park as a result of the different habitats 

it offers to recreationists is also dependent on the habitat constants. To help interpret the combined 

effect of the constants and area coefficients presented in Table 16, Figure 8 plots out the utility 

value delivered by parks with increasing extents of the different landcovers. To be clear, each of the 

lines plotted in Figure 8 can be thought of as representing the utility values delivered by a single-

habitat park of increasing area. 

While differences in scaling of the different models makes it difficult to compare the absolute values 

of the preferences plotted out in Figure 8, it is apparent that the ordering over the values associated 

with different habitats differs across the three models. Perhaps the NMNL model returns the most 

intuitively pleasing ordering, with recreational grassland, woods and wood pasture offering relatively 

higher levels of value compared to moors & heath, wetlands and natural grassland.  

Notice also from Table 16 that our models examine whether the types of trees in woodlands 

influenced preferences. For parks we find that broadleaf woods are significantly preferred to 

coniferous woodland, while land that has been newly felled or planted with young trees returns a 

significant negative coefficient.  
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Figure 8: Value of Area of Different Landcover Types in Parks 

Table 17 and Figure 9 repeat the analysis of habitat for path-type sites. Once again, the MNL and 

NMNL models return a set of coefficients that conform with expectations that value should increase 

with increasing extents of different habitats. For moorland and wetlands the CNMNL model, 

however, records parameter estimates that are not increasing with increasing area. Indeed, these 

parameters converge on the corner solution of zero enforced by our use of constrained 

optimisation.  

Table 17: Parameter estimates for Site & Mode Choices – Habitats in Paths 

Parameter MNL 
NMNL 

(Habitat) 

CNMNL 

(Habitat) 

Moors & Heath: 
   

constant 0 0 0 

area 
0.1903 

(1.413) 

0.1682 

(1.451) 

0 

(.) 

Natural Grass:    

constant 
-0.3663 

(-0.933) 

0.9693 

(0.975) 

0.3838 

(1.146) 

area 
0.5267*** 

(5.008) 

0.3659*** 

(4.708) 

0.4424*** 

(5.024) 

Recreational Grass:    

constant 
-0.4044 

(-1.136) 

2.5929*** 

(2.672) 

0.3458 

(1.124) 
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area 
0.3631 

(0.879) 

0.3135 

(1.346) 

0.0564 

(0.253) 

Wetlands:    

constant 
0.4785 

(0.452) 

0.5787 

(0.417) 

-0.0228 

(-0.022) 

area 
0.2604 

(1.005) 

0.1866 

(0.892) 

0 

(.) 

Woods:    

constant 
-0.3067 

(-0.849) 

2.129** 

(2.184) 

0.4279 

(1.36) 

coniferous 0 0 0 

broad Leaf 
0.036 

(0.438) 

0.0707 

(1.169) 

0.0804 

(1.285) 

felled or young 
0.3528 

(1.212) 

0.2391 

(1.081) 

0.2277 

(1.028) 

area - woodland 
0.2831*** 

(4.133) 

0.2328*** 

(4.592) 

0.3247*** 

(5.828) 

area - wood pasture 
0.654*** 

(4.758) 

0.5035*** 

(4.882) 

0.6168*** 

(5.629) 

Agriculture:    

constant 
-0.4316 

(-1.227) 

2.2137** 

(2.31) 

0.3811 

(1.229) 

area 
0.3404*** 

(5.689) 

0.2692*** 

(6.075) 

0.4416*** 

(9.184) 

area - HLS 
0 

(.) 

0 

(.) 

0 

(.) 

Path Habitat Diversity 
-0.0092 

(-0.083) 

-0.0203 

(-0.288) 

0.1329** 

(2.418) 

Notes: Statistics report the coefficient estimate with the robust standard error below in brackets. Coefficients 
significant at the 90% level are highlighted with ***, those at the 95% level with ** and those at 99% at *. 

 

Considering Figure 9, it is again the NMNL model that returns the perhaps the most intuitively 

plausible ordering of values. In that model, paths through recreational grassland and wood pasture 

return the highest values. Agricultural land, natural grassland and woodland return the next highest 

values with wetlands and moors & heathland providing the least value. For paths through woodland, 

the parameters on tree type and age show no significant effect of these factors on preferences. 

Overall, the models demonstrate that habitat extent is a significant determinant of site choice. With 

regards to sensitivity to habitat extent and the plausibility of the relative size of preferences for 

different habitats, the NMNL model returns coefficients that are perhaps most in tune with prior 

expectations. 
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Figure 9: Value of Area of Different Landcover Types for Paths 

Site and Mode Choice – Water  

In addition, to habitat extent, the models include a detailed description of the extent of different 

water features to be found at each site. Again we use a specification in which the composition of 

water features is included through a series of variables capturing the extent of different types of 

water body. Indeed, for each type of water body we adopt the same specification as used for land 

habitats; namely the share of the log total area of water features comprised of that water body type. 

At the top level we distinguish between freshwater and saltwater features, including dummy 

variables to distinguish sites where either of those features are the dominant habitat to be found at 

a site.  

Amongst freshwater features we include extent of rivers & canals as well as extent of lakes. For 

rivers & canals we also include a dummy variable identifying rivers where the WFD ecological status 

variable is in the ‘good’ or ‘excellent’ category. Amongst saltwater feature we include extents of sea, 

estuaries and saltmarshes to be found at each site. Again we estimate separate parameters for park- 

and path-type recreation sites. 

Table 18 reports parameter estimates describing preferences for the waterscapes of park-type 

recreation sites. Figure 10 visualises those estimates plotting out the utility value delivered by parks 

with increasing extents of different water bodies.  

For all three models we observe that increasing size of lakes & reservoirs in park-type sites has a 

strong positive effect on values. Of the other water features, the NMNL model shows the most by 

way of the expected sensitivity to waterscapes with estuaries, rivers & canals and saltmarshes also 

returning positive coefficients though these are not statistically significant. 
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Table 18: Parameter estimates for Site & Mode Choices – Water Features in Parks 

Parameter MNL 
NMNL 

(Habitat) 

CNMNL 

(Habitat) 

Freshwater    

constant 
-0.0588 

(-0.224) 

0.9523** 

(2.014) 

0.0347 

(0.141) 

area - lake & reservoir 
0.2282*** 

(6.596) 

0.1728*** 

(6.745) 

0.1613*** 

(6.075) 

area - river & canal 
0 

(.) 

0.0152 

(0.751) 

0.0028 

(0.134) 

low ecological quality 0 0 0 

high ecological quality 
0.3714*** 

(5.113) 

0.2445*** 

(4.51) 

0.2329*** 

(4.178) 

Saltwater    

constant 
1.2914*** 

(3.645) 

0.9809* 

(1.878) 

0.2337 

(0.726) 

area - sea 
0 

(.) 

0 

(.) 

0 

(.) 

area - estuary 
0.168 

(1.429) 

0.0708 

(0.604) 

0 

(.) 

area - saltmarsh 
0 

(.) 

0.0219 

(0.146) 

0.002 

(0.017) 

Notes: Statistics report the coefficient estimate with the robust standard error below in brackets. Coefficients 
significant at the 90% level are highlighted with ***, those at the 95% level with ** and those at 99% at *. 

 

Figure 10: Value of Area of Different Watercover Types for Parks 
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The same analysis for water features accessed by path-type sites are reported in Table 19 and Figure 

11. Notice how, in contrast to park-type features, we see a far greater sensitivity to extent of water 

features for path-type sites. Across the models we see significant positive coefficients on the extents 

of Rivers & Canals, Lakes, Sea and Estuaries. One possibility to explain that difference is that access 

to water features is often best served by a path-type recreation site that follows the border of the 

water feature; for example, along a river or coastal path. We suspect that waterscapes are more 

likely to be the key feature of path-type recreation sites than they are of park-type sites. 

Table 19: Parameter estimates for Site & Mode Choices – Water Features in Paths 

Parameter MNL 
NMNL 

(Habitat) 

CNMNL 

(Habitat) 

Freshwater    

constant 
0.3488 

(0.734) 

1.1192 

(1.123) 

0.3785 

(1.003) 

area - lake & reservoir 
0.1367 

(1.602) 

0.1161* 

(1.883) 

0.0299 

(0.503) 

area - river & canal 
0.1979*** 

(5.541) 

0.1171*** 

(4.567) 

0.0139 

(0.525) 

low ecological quality 0 0 0 

high ecological quality 
0.3714*** 

(5.113) 

0.2445*** 

(4.51) 

0.2329*** 

(4.178) 

Saltwater    

constant 
0.0458 

(0.125) 

1.8833* 

(1.926) 

0.5822* 

(1.765) 

area - sea 
0.4585** 

(2.305) 

0.3160** 

(2.544) 

0.1155 

(0.979) 

area - estuary 
0.4513** 

(2.199) 

0.1850 

(1.113) 

0 

(.) 

area - saltmarsh 
0.2818 

(0.62) 

0.0412 

(0.15) 

0 

(.) 

Notes: Statistics report the coefficient estimate with the robust standard error below in brackets. Coefficients 
significant at the 90% level are highlighted with ***, those at the 95% level with ** and those at 99% at *. 

 

Across all three models we find that paths that follow the coast are most highly valued. In the MNL 

model, the extent of access to estuaries is valued very similarly to access to the coast. In the NMNL 

model estuary values are somewhat smaller, but in the CNMNL model access to estuaries converges 

on the corner solution of zero value. Within each of three models we observe that the extent of 

access to rivers and to lakes & reservoirs are attributed very similar values. In the NMNL those 

values are both statistically significant at the 90% level of confidence or higher whereas in the 

CNMNL neither prove to be significant. In all models high river water quality is positively valued. 
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Figure 11: Value of Area of Different Watercover Types for Paths 

Overall, it is again the NMNL model which gives an ordering to preferences that is perhaps most 

plausible; with access to sea seen as the most valuable water feature, estuaries somewhat less 

valuable, followed by almost identical preferences for rivers & canals and lakes & reservoirs with 

saltmarsh appearing as the least valuable water feature.  

Site and Mode Choice – Beaches  

Table 20 reports parameter estimates on covariates describing the qualities of beaches. For all three 

models beaches with high water quality are preferred to those with low quality or sand, shingle or 

sand & shingle are valued more greatly than beaches that are predominantly rocky or of solid man-

made construction. Perhaps the most noticeable difference between the models Is that both the 

MNL and NMNL models follow prior expectations signalling a strong positive preference for beach 

recreation (all else held equal), something that is not returned by the CNMNL model.  

Table 20: Parameter estimates for Site & Mode Choices – Beaches 

Parameter MNL 
NMNL 

(Habitat) 

CNMNL 

(Habitat) 

Beach 
0.853** 

(2.175) 

0.8036** 

(2.198) 

0.4877 

(1.412) 

Low Water Quality  0 0 0 

High Water Quality 
0.3432*** 

(2.968) 

0.3446*** 

(3.288) 

0.3456*** 

(3.169) 

Rocky or Harbour 0 0 0 

Sand 
0.4164* 

(1.657) 

0.3827 

(1.616) 

0.4016* 

(1.646) 
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Shingle 
0.5317* 

(1.942) 

0.459* 

(1.776) 

0.4715* 

(1.77) 

Sand & Shingle  
0.3458 

(1.333) 

0.3258 

(1.328) 

0.3429 

(1.357) 

Notes: Statistics report the coefficient estimate with the robust standard error below in brackets. Coefficients 
significant at the 90% level are highlighted with ***, those at the 95% level with ** and those at 99% at *. 

Site and Mode Choice – Points of Interest 

Table 21 reports parameter estimates on covariates indicating the presence of points of interest at 
recreation sites. As anticipated for all three models we find that each of the different categories of 
points of interest are positively regarded. Only the parameters on viewpoints fail to show a 
statistically significant relationship. 

Table 21: Parameter estimates for Site & Mode Choices – Points of Interest 

Parameter MNL 
NMNL 

(Habitat) 

CNMNL 

(Habitat) 

Archaeology 
0.3271*** 

(4.712) 

0.2065*** 

(3.985) 

0.199*** 

(3.79) 

Historic Building 
0.2947*** 

(4.594) 

0.2188*** 

(4.708) 

0.2173*** 

(4.549) 

Scenic Features 
0.1503* 

(1.764) 

0.139** 

(2.202) 

0.1325** 

(2.08) 

Playground 
0.5412*** 

(16.806) 

0.3681*** 

(15.744) 

0.4119*** 

(17.34) 

Viewpoint  
0.0226 

(0.387) 

0.0311 

(0.74) 

0.0061 

(0.142) 

Notes: Statistics report the coefficient estimate with the robust standard error below in brackets. Coefficients 
significant at the 90% level are highlighted with ***, those at the 95% level with ** and those at 99% at *. 

Site and Mode Choice – Designations 

Table 22  and Table 22Table 23 report parameter estimates on covariates indicating the proportion 
of a sites extent under different designations for park-type and path-type recreation sites 
respectively. 

Table 22: Parameter estimates for Site & Mode Choices – Park Designations  

Parameter MNL 
NMNL 

(Habitat) 

CNMNL 

(Habitat) 

National Park 
0.3023*** 

(5.758) 

0.1800*** 

(3.863) 

0.1942*** 

(4.031) 

AONB 
0.1412*** 

(3.561) 

0.0946** 

(2.547) 

0.0996*** 

(2.677) 

CROW 
0 

(.) 

0.0079 

(0.19) 

0.0048 

(0.109) 
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Heritage Coast 
0 

(.) 

0 

(.) 

0 

(.) 

Nature Designation 
0 

(.) 

0 

(.) 

0 

(.) 

Country Park 
0.3732*** 

(5.667) 

0.2790*** 

(5.686) 

0.3079*** 

(6.226) 

Historic 
0.1288*** 

(8.951) 

0.0843*** 

(8.481) 

0.0920*** 

(8.759) 

Millennium or Doorstep 

Green 

0.1094** 

(2.108) 

0.0786** 

(1.999) 

0.0792** 

(1.972) 

Notes: Statistics report the coefficient estimate with the robust standard error below in brackets. Coefficients 
significant at the 90% level are highlighted with ***, those at the 95% level with ** and those at 99% at *. 

For designations in parks, all three models return very similar parameter estimates. Country Park 

status is accorded the highest value. Parks in National Parks are also attributed high values with sites 

in AONBs, Millennium Greens and parks with Historic status returning smaller yet still positive and 

significant coefficients. Across all three models no additional value is associated with parks along 

Heritage Coasts, those with various nature designations or those designated as CROW. 

Table 23: Parameter estimates for Site & Mode Choices – Path Designations 

Parameter MNL 
NMNL 

(Habitat) 

CNMNL 

(Habitat) 

National Park 
0.5517*** 

(5.071) 

0.3097*** 

(3.477) 

0.2904*** 

(3.133) 

AONB 
0 

(.) 

0 

(.) 

0 

(.) 

CROW 
0.1865*** 

(3.078) 

0.1457*** 

(3.996) 

0 

(.) 

Heritage Coast 
0.3967 

(1.525) 

0.0553 

(0.29) 

0.0655 

(0.34) 

Nature Designation 
0.0148 

(0.166) 

0.0020 

(0.027) 

0 

(.) 

National Trail 
0.0557 

(0.389) 

0.1804* 

(1.778) 

0.1229 

(1.203) 

Notes: Statistics report the coefficient estimate with the robust standard error below in brackets. Coefficients 
significant at the 90% level are highlighted with ***, those at the 95% level with ** and those at 99% at *. 

The designation parameters for path-type sites also identify National Parks as settings that deliver 

higher value. For the NMNL and MNL models, paths passing through areas with CROW designation 

also show a significant positive effect. Of the remaining designations the only other significant 

parameter is returned by the NMNL model where paths with National Trails designation are found to 

be valued positively. 

Looking at the designation parameters as a whole it is again the NMNL model which returns patterns 

of significant parameter estimates that attune most closely with prior expectations. 



 

56 
 

 Similarity Groups 

The final set of parameters to be considered are those capturing the level of similarity within 
similarity groups. Those parameters are listed in Table 24. Of course, no such parameters are 
estimated for the MNL which does not allow for similarity groupings. Recall also that in the NMNL 
model sites are assigned exclusively to the similarity group for the dominant habitat at that site 
whereas for the CNMNL model sites can be members of multiple similarity groups where there 
membership of a habitat similarity group is determined by the proportion of the site area under that 
habitat. 

For the estimated model to be universally consistent with the assumptions of random utility theory, 

the similarity parameters should take a value greater than 1. That is true for all similarity parameters 

in the NMNL model, but for the CNMNL model the parameters on salt water habitat and wetland 

habitat converge on the value of 1 set as a constraint in the optimisation.  

Table 24: Parameter estimates for similarity groups 

Parameter MNL 
NMNL 

(Habitat) 

CNMNL 

(Habitat) 

Woodland  
1.3717*** 

(14.383) 

1.3848*** 

(15.874) 

Salt Water  
1.0362 

(0.82) 

1 

(.) 

Fresh Water  
1.3310*** 

(7.083) 

1.2575*** 

(8.187) 

Recreational Grass  
1.4562*** 

(20.161) 

1.3977*** 

(23.14) 

Agriculture  
1.4112*** 

(13.482) 

1.4975*** 

(19.804) 

Natural Grass  
1.2559*** 

(3.905) 

1.5703*** 

(10.899) 

Wetland  
1.0022 

(0.012) 

1 

(.) 

Moors & Heathland  
1.0216 

(0.149) 

1.051 

(0.755) 

Allotments  
1.5023*** 

(4.568) 

1.5082*** 

(4.486) 

Cemeteries  
1.2862*** 

(5.567) 

1.3196*** 

(6.621) 

Notes: Statistics report the coefficient estimate with the robust standard error below in brackets. In this case 
coefficients significance is relative to a value of 1 with those significant at 90% level highlighted with ***, those 
at the 95% level with ** and those at 99% at *. 
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7. Conclusions and Model Choice 

The ORVal extension project has allowed for a significant programme of model development and 

testing. That programme of work has included the introduction of a travel mode dimension to 

choice, the refinement of key covariates (particularly, travel costs), the inclusion of new covariates 

including weather and measures of habitat quality, and an improved specification of the preference 

function.  

The parameter estimates returned by the new models generally conform to prior expectations 

regarding impacts of covariates on participation and choice of mode and site. At the same time, 

there are important differences across specifications of the model allowing for different patterns of 

similarity between recreation sites, an issue we return to subsequently. Of particular interest given 

the objectives of the ORVal extension project is the fact that coefficients on measures of woodland 

quality, bathing water quality and river ecological quality all return significant parameters with 

expected signs. Moreover, the new ORVal recreation demand models demonstrate markedly 

improved sensitivity to key determining factors such as land and water cover than was exhibited by 

the original ORVal model. 

A final decision to be made concerns which particular specification of the model to use in developing 

the online ORVal tool. Two different considerations might inform that choice. First, we would like to 

use a model that performed well with various statistical measures of goodness-of-fit. Second, we 

would like a model whose parameters deliver predictions that attune best with prior expectations 

regarding the impact of variables on recreational activity. 

With regards to measures of goodness-of-fit, we find that significant improvements in within-sample 

fit can be achieved through the specification of models with increasingly complex definitions of 

similarity groupings within the GEV framework. According to within-sample fit, therefore, the 

CNMNL specifications perform best.  In contrast, the MNL model, a specification with no similarity 

groups, has the best out-of-sample prediction performance. That out-of-sample performance results 

primarily from the MNL’s superior ability to predict participation decisions. Both the NMNL and the 

CNMNL perform worse in predicting that participation decision but actually perform relatively better 

on predicting which particular recreation site is chosen for a visit. 

While the CNMNL may be preferred on in-sample fit measures and the MNL on out-of-sample fit 

measures, our review of the coefficient estimates suggests that the NMNL model results in 

parameters that accord better with prior expectations and are responsive to the range of changes 

that are central to the ORVal tool functionality. One of those functions, for example, is predictions 

regarding changes in recreational behaviour resulting from changes in landcover at a particular site. 

Compared to the CNMNL model in particular, the NMNL model returns the largest array of positive 

and significant coefficients on the land and water habitat variables implying that model will provide 

predictions that are responsive to changes in landcover, 

One further concern regards the fact that the ORVal tool publishes predictions of the predicted 

welfare value generated by each site and the predicted number of trips to that site. It is a 

mathematical reality of that model that as the number of options increases that the ratio of 

predicted welfare value to predicted visits (that is to say, welfare per visit) will converge on a 

constant given by the negative inverse of the travel cost parameter; in this case a value per 
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predicted trip of £5.13. The intuition behind that result is that in arriving at its predictions of which 

site people choose to visit the MNL model imposes the assumption that no site is more similar to 

some other site than it is to any other site. Since the model’s predictions are probabilistic, we find 

that the model results in a classic equi-marginal outcome in which people are assumed to spread out 

their probability of visiting across sites in direct proportion to the welfare they will gain from visiting 

each site. If a site were to offer a ratio of welfare to visitation probability than was greater than 

other sites, then the optimal response would be to increase the probability of visiting that site until 

the ratio of welfare to probability of visiting was the same across all sites. Following the same logic, 

we would expect to see the NMNL returning a welfare per expected visit measure that is the same 

for all sites in a single similarity group but differs across similarity groups. The welfare to predicted 

visits measure for the CNMNL model will differ across all parks according to the particular shares of 

habitat in a park. 

To summarise, there is no one model that clearly dominates the others; 

 The CNMNL model returns the best in-sample fits and returns estimates of the welfare per 

visit ratio that differs across sites. At the same time, the CNMNL model does not perform 

particularly well in terms of out-of-sample fit and returns parameters that show insensitivity 

to a number of factors that is discordant with prior expectations. 

 The MNL logit model performs particularly well in out-of-sample tests particularly as a result 

of its superior ability to predict the participation decision. The parameter estimates of the 

model accord reasonable well with prior expectations but result in estimates of the welfare 

to visits ratio which, counter-intuitively, is identical for every site. 

 In terms of goodness-of-fit, the NMNL model does not exceed in any of the measures of 

within- or out-of-sample prediction. Indeed, it performs largely the same as the CNMNL 

model according to these measures. At the same time, the NMNL model returns perhaps the 

largest array of coefficient estimates that are in accordance with prior expectations and at 

least predicts different welfare per visit values that differ across similarity group. 

Since no strong argument arises for any one model, our recommendation is to take forward the 

NMNL model, recommendation made primarily on that model’s superior sensitivity to an array of 

factors that might be expected to influence choice across sites (in particular, sensitivity to different 

land and water habitats and to a range of designations). 
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APPENDIX 1: Destination Matching Algorithm 

For each observation, 𝑖, the scoring procedure progressed through the following steps. 

 Potential Sites: To identify greenspaces that were potential matches to the visit destination, 

all parks, beaches and path networks with a within 2.5km of the location recorded as the 

MENE destination location were selected from the ORVal Greenspace Map. For beaches and 

parks the proximity of the potential site was recorded as the straight line distance from the 

centroid of that site to the MENE destination location. For path networks the proximity was 

taken as the straight line distance to the nearest location on a path network. 

 Location Score: A proximity index was calculated for each site in the list of potential matches 

(indexed by 𝑠) using the following formula: 

1 − 
𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦𝑠 (in m)

2,500
  (21)  

which ascribes an index of 1 to sites exactly on the recorded MENE destination location and 

declines linearly with distance to 0 for the most distant potential match sites 2.5km from the 

recorded destination location. 

For path networks, sites are defined by access points such that a second round of logic was 

required. First, we identified all access points to each site network in the list of potential 

matches. We then ranked those according to how far the access point was from the point 

we had previously identified as the nearest point on that network to the recorded MENE 

destination location with rank 0 being the closest, 1 the second closest, 2 the third closest, 

and so on. Under the assumption that it was more likely that we calculated the proximity 

index for access point 𝑝 on path network 𝑠 as follows; 

(1 −  
𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦𝑠 (in m)

2,500
) × 0.95𝑟𝑎𝑛𝑘𝑠,𝑝   (22)  

Such that the highest ranked path access point on the network was given the highest 

proximity index and that index declined geometrically with increasing rank. 

A location score was calculated first by multiplying the proximity index by a positive 

weighting factor. As with the other weighting factors to be described subsequently this 

weighting factor was adjusted in a process of calibration that ultimately set its value to 50.  

Finally the location score for each site was adjusted to reflect information provided by 

respondents in the MENE questionnaire on the distance they had travelled to get to the site. 

That information was provided as a range such that if the distance between the 

respondent’s home and a possible match site was less than half the distance of the low end 

of that range then the proximity score was adjusted by a factor given by;  

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝐻𝑜𝑚𝑒

0.5 × 𝐿𝑜𝑤𝑒𝑟 𝐸𝑛𝑑 𝑜𝑓 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑅𝑎𝑛𝑔𝑒
  (23)  
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Likewise, if the distance from a respondent’s home was greater than 1.5 times the high end 

of the reported distance range then the proximity score was adjusted by a factor given by;  

 

1.5 × 𝐿𝑜𝑤𝑒𝑟 𝐸𝑛𝑑 𝑜𝑓 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑅𝑎𝑛𝑔𝑒

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝐻𝑜𝑚𝑒
  (24)  

 

Clearly both adjustment factors lie between 0 and 1 ensuring that possible match sites 

located at a distance from a respondent’s home considerably different from the distance 

they reported in the MENE questionnaire end up with a lower overall proximity score. 

The final location score varied on the range between 0 and 50. 

 Environs Score: Questions 2 and 5 of the MENE survey provide information that helps 

identify the environs of the visited site particularly whether it was in a built-up or rural 

location, and whether that on was coastal or inland. To calculate an environs score for each 

possible match site, we began by defining a built-up indicator variable, built-up%, which 

established the proportion of a park’s boundaries or a path’s length that was within 100m of 

a built-up area. Where a respondent answered that they had visited a location in a town, city 

or seaside resort then we began the calculation of an environs score for each possible match 

site by multiplying a weighting factor (calibrated value: 10) by built-up%. Alternatively, if 

they indicated they had visited a location in the countryside a possible match sites location 

score was calculated as the weighting factor multiplied by 1 − built-up%. A similar calculation 

was carried out for coastal locations where coastal proximity was turned into a linearly 

declining index equal to 1 at the coast and falling to a value of 0 5km inland. Again if the visit 

destination was recorded as coastal then a weighting factor (calibrated value: 10) was 

multiplied by the coastal proximity index otherwise it was multiplied by one minus that 

amount. The environs score was incremented by that value reflecting the degree to which 

the coastal environs of the visited site matched that of possible match site.  

Answers to Question 5 of the MENE survey gave further clues as to the environs of the 

chosen site; for example, a respondent indicating that they had visited “Farmland” was 

assumed to have visited a site in a rural setting, while those indicating they had visited “A 

park in a town or city” had clearly chosen a site in a built-up setting. Such confirmatory 

information was given a weighting factor (calibrated value: 5) and added to the total 

environs score, which as a result could take a maximum value of 25. 

 Type Score: Answers to Question 4 and 5 of the MENE survey allowed us to compare the 

type of recreation site visited by a respondent to the types of the possible match sites. Some 

explicit responses were given very high weighting factors; for example, if a respondent 

stated they had visited “an allotment”, then all allotments in the list of possible sites were 

given a type score of 50 while all sites that were not allotments were given a type score of -

10. Where the details of the Question 5 response were less explicit a lower type score was 

attributed; for example, if a respondent stated they had visited “a playing field or other 

recreation area” then a type score of 8 was given for all possible visit sites classified as 

‘parks’ and a type score of 0 to all possible visit sites with a different classification.  

 Landcover Score: Similar to the type score the landcover score used evidence from 

Questions 4 and 5 of the MENE survey to establish how closely the sorts of landcovers 
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present at the possible visit sites matched those present at the site actually visited. As an 

example, respondents indicating they had participated in fishing, swimming outdoors or 

watersports must have visited a site bordering water features including rivers, lakes, 

estuaries and sea. Accordingly, sites with such features amongst the list of possible match 

sites were given an increased landcover score. Similarly, where a respondent indicated they 

had visited a woodland or forest, then possible match sites with woodland cover were 

attributed landcover score. 

 Total Match Score: To arrive at an overall match score for each possible site, the location 

score, environs score, type score and landcover score were summed. The site with the 

highest match score was chosen as the most likely location of that particular focus visit. 

The full matching algorithm is transcribed below: 

CREATE TABLE MENE.NearSites  

 (spid  bigint,  

 type  varchar,  

 supertype varchar, 

 prox  float, 

 areagrid float,  

 urbanpct float,  

 coastprox float, 

 lc_woods float,  

 lc_agrculture float,  

 lc_moors_heath float,  

 lc_mountain float,  

 lc_coastal float,  

 lc_wood_pasture float, 

 lc_sports_pitches float, 

 lc_golf float, 

 lc_allotments float, 

 lc_seaside float, 

 lc_estuary float, 

 lc_rivers_canals float, 

 lc_lakes_reservoirs float, 

 dg_ancient_woodland float, 

 dg_sssi float, 

 dg_CPark float, 

 dg_natura2000 float, 

 dg_nnr  float, 

 dg_lnr float, 

 dg_ramsar float, 

 poi_playground float, 

 disthome float, 

 near_score integer, 

 loc_score integer, 

 type_score integer, 

 lc_score integer, 

 score  integer); 

 

DO 

$$ 

<<DestinationMatching>> 

DECLARE 

 destination record; 

 visitdata record; 

 matches  record; 

 proximity integer := 2500; 

 counter  integer := 0; 

 nprint  integer := 50; 

 pcounter integer := 0; 

 numrows  integer; 

 numsites integer; 

 matchcnt integer; 

 coastdist integer := 5000; 

 coastthrshld integer := 1000; 

 ntoprocess float; 

 nprocessed float; 

 TEST  boolean := FALSE; 
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BEGIN 

 

 TEST = FALSE; 

 

 ntoprocess := (SELECT count(*) FROM mene.visit_match); 

 

 FOR destination IN TABLE mene.visit_match LOOP 

 

  IF destination.geom_dest IS NULL OR destination.geom_home IS NULL THEN  

   -- No destination or home location data - MATCHCODE -2 

   IF NOT TEST THEN  

    EXECUTE 'UPDATE mene.visit_match SET matchcode = -2 WHERE visitid = 

'||destination.visitid; 

   END IF; 

  ELSIF lower(destination.q9) != 'your home' THEN  

   -- Not travelled from home - MATCHCODE -3 

   IF NOT TEST THEN  

    EXECUTE 'UPDATE mene.visit_match SET matchcode = -3 WHERE visitid = 

'||destination.visitid; 

   END IF; 

  ELSIF (lower(destination.q4_06) = 'yes') OR (lower(destination.q4_09) = 'yes') OR 

(lower(destination.q4_11) = 'yes') THEN -- Not a location based interaction with greenspace 

    -- q4_6: Off-road driving or motorcycling 

    -- q4_9: Road cycling 

    -- q4_11: Appreciating scenery from your car (e.g. at a viewpoint) 

    -- MATCHCODE -4 

   IF NOT TEST THEN  

    EXECUTE 'UPDATE mene.visit_match SET matchcode = -4 WHERE visitid = 

'||destination.visitid; 

   END IF; 

  ELSIF (lower(destination.q5_05) = 'yes') AND 

    (lower(destination.q5_01) = 'no') AND (lower(destination.q5_02) = 'no') AND 

(lower(destination.q5_03) = 'no') AND (lower(destination.q5_04) = 'no') AND  

    (lower(destination.q5_06) = 'no') AND (lower(destination.q5_07) = 'no') AND 

(lower(destination.q5_08) = 'no') AND (lower(destination.q5_09) = 'no') AND  

    (lower(destination.q5_10) = 'no') AND (lower(destination.q5_11) = 'no') AND 

(lower(destination.q5_12) = 'no') AND (lower(destination.q5_13) = 'no') AND  

    (lower(destination.q5_14) = 'no') AND (lower(destination.q5_15) = 'no') AND 

    (lower(destination.q4_02) = 'no') AND (lower(destination.q4_03) = 'no') AND 

(lower(destination.q4_04) = 'no') AND (lower(destination.q4_05) = 'no') AND  

    (lower(destination.q4_06) = 'no') AND (lower(destination.q4_07) = 'no') AND 

(lower(destination.q4_08) = 'no') AND (lower(destination.q4_10) = 'no') AND  

    (lower(destination.q4_12) = 'no') AND (lower(destination.q4_13) = 'no') AND 

(lower(destination.q4_15) = 'no') AND (lower(destination.q4_16) = 'no') AND  

    (lower(destination.q4_17) = 'no') AND (lower(destination.q4_18) = 'no') AND 

(lower(destination.q4_19) = 'no') THEN  

   -- Then just visited a village - MATCHCODE -5 

   IF NOT TEST THEN  

    EXECUTE 'UPDATE mene.visit_match SET matchcode = -5 WHERE visitid = 

'||destination.visitid; 

   END IF; 

  ELSE  

 

   -- (1) FIND NEAR SITES 

   -- ------------------- 

   -- Select all sites ST_Dwithin 1km of destination coordinates 

   -- No need to worry about entrances 

   TRUNCATE TABLE MENE.NearSites; 

   numsites := 0; 

 

   -- Parks: 

   INSERT INTO MENE.NearSites (spid, type, supertype, prox, disthome, urbanpct, coastprox, 

areagrid, 

      lc_woods, lc_agrculture, lc_moors_heath, lc_mountain, lc_coastal, 

lc_wood_pasture, lc_sports_pitches, lc_golf, 

      lc_allotments, lc_seaside, lc_estuary, lc_rivers_canals, lc_lakes_reservoirs, 

      dg_ancient_woodland, dg_sssi, dg_CPark, dg_natura2000, dg_nnr, dg_lnr, 

dg_ramsar, poi_playground) 

   SELECT spid, type, supertype,  

     (1-(ST_Distance(geom, destination.geom_dest)/proximity)) AS prox,  

     ST_Distance(geom, destination.geom_home) AS disthome, 

     urbanpct, coastprox, areagrid, 

    lc_woods, lc_agrculture, lc_moors_heath, lc_mountain, lc_coastal, lc_wood_pasture, 

lc_sports_pitches, lc_golf, 

    lc_allotments, lc_seaside, lc_estuary, lc_rivers_canals, lc_lakes_reservoirs, 
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    dg_ancient_woodland, dg_sssi, dg_CPark, dg_natura2000, dg_nnr, dg_lnr, dg_ramsar, 

poi_playground 

   FROM parks.parks_england 

   WHERE ST_Dwithin(geom, destination.geom_dest, proximity) AND supertype IS NOT NULL; 

   GET DIAGNOSTICS numrows = ROW_COUNT; 

   numsites = numsites + COALESCE(numrows,0); 

    

   -- Paths: 

   INSERT INTO MENE.NearSites (spid, type, supertype, prox, disthome, urbanpct, coastprox, 

areagrid, 

      lc_woods, lc_agrculture, lc_moors_heath, lc_mountain, lc_coastal, 

lc_wood_pasture, lc_sports_pitches, lc_golf, 

      lc_allotments, lc_seaside, lc_estuary, lc_rivers_canals, lc_lakes_reservoirs, 

      dg_ancient_woodland, dg_sssi, dg_CPark, dg_natura2000, dg_nnr, dg_lnr, 

dg_ramsar, poi_playground) 

   SELECT spid, type, supertype, (prox*0.95^(rank-1)) AS prox, disthome, urbanpct, coastprox, 

areagrid, 

    lc_woods, lc_agrculture, lc_moors_heath, lc_mountain, lc_coastal, lc_wood_pasture, 

lc_sports_pitches, lc_golf, 

    lc_allotments, lc_seaside, lc_estuary, lc_rivers_canals, lc_lakes_reservoirs, 

    dg_ancient_woodland, dg_sssi, dg_CPark, dg_natura2000, dg_nnr, dg_lnr, dg_ramsar, 

poi_playground 

   -- ranks access points  

   FROM (SELECT spid, type, supertype, prox, disthome, urbanpct, coastprox, rank() OVER 

(PARTITION BY pid ORDER BY dist_acc ASC) AS rank, areagrid, 

    lc_woods, lc_agrculture, lc_moors_heath, lc_mountain, lc_coastal, lc_wood_pasture, 

lc_sports_pitches, lc_golf, 

    lc_allotments, lc_seaside, lc_estuary, lc_rivers_canals, lc_lakes_reservoirs, 

    dg_ancient_woodland, dg_sssi, dg_CPark, dg_natura2000, dg_nnr, dg_lnr, dg_ramsar, 

poi_playground 

   -- Find access points to close paths 

    FROM (SELECT tbl1.pid, tbl1.spid, tbl1.type, tbl1.supertype,  

       (1-ST_Distance(tbl2.geom, destination.geom_dest)/proximity) AS prox,  

         ST_Distance(tbl2.geom, destination.geom_home) AS 

disthome, 

       tbl1.urbanpct, tbl1.coastprox, tbl1.areagrid, 

     ST_Distance(tbl1.geom, destination.geom_dest) AS dist_acc, 

     lc_woods, lc_agrculture, lc_moors_heath, lc_mountain, lc_coastal, lc_wood_pasture, 

lc_sports_pitches, lc_golf, 

     lc_allotments, lc_seaside, lc_estuary, lc_rivers_canals, lc_lakes_reservoirs, 

     dg_ancient_woodland, dg_sssi, dg_CPark, dg_natura2000, dg_nnr, dg_lnr, dg_ramsar, 

poi_playground   

    FROM paths.paths_england AS tbl1 INNER JOIN 

     -- Select paths that pass close to destination 

     (SELECT DISTINCT pid, ST_ClosestPoint(geom_line, destination.geom_dest) AS geom 

    FROM paths.paths 

    WHERE ST_Dwithin(geom_line, destination.geom_dest, proximity)) AS tbl2 

    ON tbl1.pid = tbl2.pid AND ST_DWithin(tbl1.geom, tbl2.geom, 10000)) AS tbl3) AS tbl4; 

  -- Find nearest point on paths, then select all access points paths that are within 10km 

  -- Rank access points on same pid and reweight prox score according to how close access 

point is to destination 

   GET DIAGNOSTICS numrows = ROW_COUNT; 

   numsites = numsites + COALESCE(numrows,0); 

    

   -- Beaches: 

   INSERT INTO MENE.NearSites (spid, type, supertype, prox, disthome, urbanpct, coastprox, 

areagrid, 

      lc_woods, lc_agrculture, lc_moors_heath, lc_mountain, lc_coastal, 

lc_wood_pasture, lc_sports_pitches, lc_golf, 

      lc_allotments, lc_seaside, lc_estuary, lc_rivers_canals, lc_lakes_reservoirs, 

      dg_ancient_woodland, dg_sssi, dg_CPark, dg_natura2000, dg_nnr, dg_lnr, 

dg_ramsar, poi_playground) 

   SELECT spid, type, supertype, 

     (1-(ST_Distance(geom, destination.geom_dest)/proximity)) AS prox,  

      ST_Distance(geom, destination.geom_home) AS disthome, 

     urbanpct, coastprox, areagrid, 

    lc_woods, lc_agrculture, lc_moors_heath, lc_mountain, lc_coastal, lc_wood_pasture, 

lc_sports_pitches, lc_golf, 

    lc_allotments, lc_seaside, lc_estuary, lc_rivers_canals, lc_lakes_reservoirs, 

    dg_ancient_woodland, dg_sssi, dg_CPark, dg_natura2000, dg_nnr, dg_lnr, dg_ramsar, 

poi_playground   

   FROM beaches.beaches_england 

   WHERE ST_Dwithin(geom, destination.geom_dest, proximity); 

   GET DIAGNOSTICS numrows = ROW_COUNT; 

   numsites = numsites + COALESCE(numrows,0); 

   -- RAISE NOTICE ' Number sites near %: %', destination.visitid, numsites;   
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   IF numsites = 0 THEN  

    -- MATCHCODE -1 

    IF NOT TEST THEN  

      EXECUTE 'UPDATE mene.visit_match SET matchcode = -1 WHERE visitid = 

'||destination.visitid; 

     END IF; 

   ELSE 

     IF NOT TEST THEN  

      EXECUTE 'UPDATE mene.visit_match SET matchcode = 0 WHERE visitid = 

'||destination.visitid; 

     END IF; 

 

   -- (2) LOCATION SCORE 

   -- ------------------- 

   -- 50 pts for proximity 

   -- Linear Distance Decay: 50 * (1 - ST_Distance/proximity) 

   UPDATE MENE.NearSites SET near_score = (50 * prox); 

 

     -- Check for compatibility with stated travel distance 

   UPDATE MENE.NearSites  

   SET near_score = near_score * disthome/(destination.travdistlo*.5) 

   WHERE disthome < destination.travdistlo*.5; 

 

     UPDATE MENE.NearSites  

   SET near_score = near_score * (destination.travdisthi*1.5)/disthome 

   WHERE disthome > destination.travdisthi*1.5; 

 

   -- (3) ENVIRONS SCORE  

   -- ------------------ 

   -- urbanpct, rural, coastal, inland 

   CASE destination.q2 

    WHEN 'In a town or city' THEN  

    UPDATE MENE.NearSites SET loc_score = (10*urbanpct  + 10*greatest(0,(coastprox-

coastthrshld)/(coastdist-coastthrshld))); 

    WHEN 'In the countryside (including areas around towns and cities)' THEN  

    UPDATE MENE.NearSites SET loc_score = (10*(1-urbanpct) + 10*greatest(0,(coastprox-

coastthrshld)/(coastdist-coastthrshld)));  

    WHEN 'In a seaside resort or town' THEN  

    UPDATE MENE.NearSites SET loc_score = (10*urbanpct  + 10*(1-greatest(0,(coastprox-

coastthrshld)/(coastdist-coastthrshld)))); 

    WHEN 'Other seaside coastline (including beaches and cliffs)' THEN  

    UPDATE MENE.NearSites SET loc_score = (10*(1-urbanpct) + 10*(1-greatest(0,(coastprox-

coastthrshld)/(coastdist-coastthrshld)))); 

    ELSE 

   END CASE; 

 

   CASE destination.q5_02 -- Farmland 

    WHEN 'Yes' THEN -- rural 

    UPDATE MENE.NearSites SET loc_score = loc_score + (5*(1-urbanpct)); 

    ELSE 

   END CASE; 

 

   CASE destination.q5_03 -- Mountain, Wood or Moorland 

    WHEN 'Yes' THEN -- rural 

    UPDATE MENE.NearSites SET loc_score = loc_score + (5*(1-urbanpct)); 

    ELSE 

   END CASE; 

 

   CASE destination.q5_08 -- Another open space in the countryside 

    WHEN 'Yes' THEN -- rural 

    UPDATE MENE.NearSites SET loc_score = loc_score + (5*(1-urbanpct)); 

    ELSE 

   END CASE; 

 

   CASE destination.q5_09 -- A park in a town or city 

    WHEN 'Yes' THEN -- urban 

    UPDATE MENE.NearSites SET loc_score = loc_score + (5*urbanpct); 

    ELSE     

   END CASE; 

    

   CASE destination.q5_13 -- Another open space in a town or city 

    WHEN 'Yes' THEN -- urban 

    UPDATE MENE.NearSites SET loc_score = loc_score + (5*urbanpct); 

    ELSE 

   END CASE; 

 

   CASE destination.q5_14 -- A beach 
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    WHEN 'Yes' THEN -- coastal 

    UPDATE MENE.NearSites SET loc_score = loc_score + (5*coastprox/coastdist); 

    ELSE 

   END CASE; 

 

   CASE destination.q5_15 -- Other coastline 

    WHEN 'Yes' THEN -- coastal 

    UPDATE MENE.NearSites SET loc_score = loc_score + (5*coastprox/coastdist); 

    ELSE 

   END CASE; 

 

   CASE destination.q4_13 -- Visits to a beach (sunbathing or paddling in the sea) 

    WHEN 'Yes' THEN -- coastal 

    UPDATE MENE.NearSites SET loc_score = loc_score + (5*coastprox/coastdist); 

    ELSE 

   END CASE; 

    

 

   -- (4) TYPE SCORE  

   -- -------------- 

   -- path park beach country park allotment golf 

   UPDATE MENE.NearSites SET type_score = 0; 

    

   -- Allotment 

   -- --------- 

   CASE destination.q5_10 -- An allotment or community garden 

    WHEN 'Yes' THEN  

    UPDATE MENE.NearSites SET type_score = type_score + 50 WHERE supertype = 'allotment'; 

    WHEN 'No' THEN  

    UPDATE MENE.NearSites SET type_score = type_score - 10 WHERE supertype = 'allotment'; 

    ELSE 

   END CASE; 

 

   -- Country Park 

   -- ------------ 

   CASE destination.q5_07 -- Country parks 

    WHEN 'Yes' THEN  

    UPDATE MENE.NearSites SET type_score = type_score + 25 WHERE supertype = 'country_park'; 

    WHEN 'No' THEN  

    UPDATE MENE.NearSites SET type_score = type_score - 5 WHERE supertype = 'country_park'; 

    ELSE 

   END CASE; 

 

   -- Cemetery 

   -- -------- 

   CASE destination.q5_08 -- Another open place in the countryside 

    WHEN 'Yes' THEN  

    UPDATE MENE.NearSites SET type_score = type_score + 3 WHERE supertype = 'cemetery'; 

    ELSE 

   END CASE; 

   CASE destination.q5_13 -- Another open place in a town or city 

    WHEN 'Yes' THEN  

    UPDATE MENE.NearSites SET type_score = type_score + 3 WHERE supertype = 'cemetery'; 

    ELSE 

   END CASE; 

 

   -- Park 

   -- ---- 

   CASE destination.q5_09 -- A park in a town or city 

    WHEN 'Yes' THEN  

    UPDATE MENE.NearSites SET type_score = type_score + 10 WHERE supertype = 'park'; 

--     WHEN 'No' THEN  

--     UPDATE MENE.NearSites SET type_score = type_score - 2 WHERE supertype = 

'park'; 

    ELSE 

   END CASE; 

   CASE destination.q5_12 -- A playing field or other recreation area 

    WHEN 'Yes' THEN  

    UPDATE MENE.NearSites SET type_score = type_score + 8 WHERE supertype = 'park'; 

--     WHEN 'No' THEN  

--     UPDATE MENE.NearSites SET type_score = type_score - 2 WHERE supertype = 

'park'; 

    ELSE 

   END CASE; 

 

   -- Beach 

   -- ----- 
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   CASE destination.q5_14 -- A beach 

    WHEN 'Yes' THEN  

    UPDATE MENE.NearSites SET type_score = type_score + 25 WHERE type = 'beach'; 

    WHEN 'No' THEN  

    UPDATE MENE.NearSites SET type_score = type_score - 5 WHERE type = 'beach'; 

    ELSE 

   END CASE; 

   CASE destination.q4_13 -- Visits to a beach (sunbathing or paddling in the sea) 

    WHEN 'Yes' THEN  

    UPDATE MENE.NearSites SET type_score = type_score + 25 WHERE type = 'beach'; 

    WHEN 'No' THEN  

    UPDATE MENE.NearSites SET type_score = type_score - 5 WHERE type = 'beach'; 

    ELSE 

   END CASE; 

 

   -- Golf 

   -- ----- 

   CASE destination.q4_19 -- Informal games and sport 

    WHEN 'Yes' THEN  

    UPDATE MENE.NearSites SET type_score = type_score + 10 WHERE supertype = 'golf'; 

    WHEN 'No' THEN  

    UPDATE MENE.NearSites SET type_score = type_score - 10 WHERE supertype = 'golf'; 

    ELSE 

   END CASE; 

 

   -- Path 

   -- ---- 

   CASE destination.q5_06 -- A path 

    WHEN 'Yes' THEN  

    UPDATE MENE.NearSites SET type_score = type_score + 10 WHERE type = 'path'; 

    ELSE 

   END CASE; 

 

   -- Nature 

   -- ------ 

   CASE destination.q4_18 -- Wildlife Watching 

    WHEN 'Yes' THEN  

    UPDATE MENE.NearSites SET type_score = type_score + 10 WHERE type = 'nature'; 

    ELSE 

   END CASE; 

 

 

   -- (5) LANDCOVER SCORE 

   -- ------------------- 

   -- woods, water, farmland, playground, sports, nature, leisure, country park 

   UPDATE MENE.NearSites SET lc_score = 0; 

 

   -- Woods 

   -- ----- 

   CASE destination.q5_01 -- A woodland or forest 

    WHEN 'Yes' THEN  

    UPDATE MENE.NearSites SET lc_score = lc_score + 5 WHERE type = 'woods'; 

    UPDATE MENE.NearSites SET lc_score = lc_score + (10*lc_woods/areagrid) + 

(5*lc_wood_pasture/areagrid) + (5*dg_ancient_woodland/areagrid); 

    ELSE 

   END CASE; 

 

   -- Farmland 

   -- -------- 

   CASE destination.q5_02 -- Farmland 

    WHEN 'Yes' THEN  

    UPDATE MENE.NearSites SET lc_score = lc_score + (15*lc_agrculture/areagrid); 

    ELSE 

   END CASE; 

 

   -- Mountain, Hill, Moorland 

   -- ------------------------ 

   CASE destination.q5_03 -- Mountain, Hill, Moorland 

    WHEN 'Yes' THEN  

    UPDATE MENE.NearSites SET lc_score = lc_score + (10*lc_moors_heath/areagrid) + 

(10*lc_mountain/areagrid); 

    ELSE 

   END CASE; 

 

   -- River, Canal, Lake or Reservoir 

   -- ------------------------------- 

   CASE destination.q5_04 -- River, Lake or Canal 
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    WHEN 'Yes' THEN  

    UPDATE MENE.NearSites SET lc_score = lc_score + (10*lc_rivers_canals/areagrid) + 

(10*lc_lakes_reservoirs/areagrid); 

    ELSE 

   END CASE; 

   CASE destination.q4_03 -- Fishing 

    WHEN 'Yes' THEN  

    UPDATE MENE.NearSites SET lc_score = lc_score + (10*lc_rivers_canals/areagrid) + 

(10*lc_lakes_reservoirs/areagrid); 

    ELSE 

   END CASE; 

   CASE destination.q4_12 -- Swimming Outdoors 

    WHEN 'Yes' THEN  

    UPDATE MENE.NearSites SET lc_score = lc_score + (5*lc_rivers_canals/areagrid) + 

(5*lc_lakes_reservoirs/areagrid); 

    ELSE 

   END CASE; 

   CASE destination.q4_17 -- Watersports 

    WHEN 'Yes' THEN  

    UPDATE MENE.NearSites SET lc_score = lc_score + (5*lc_rivers_canals/areagrid) + 

(10*lc_lakes_reservoirs/areagrid); 

    ELSE 

   END CASE; 

 

 

   -- Seaside or Esturary 

   -- ------------------ 

   CASE destination.q4_03 -- Fishing 

    WHEN 'Yes' THEN  

    UPDATE MENE.NearSites SET lc_score = lc_score + (10*lc_seaside/areagrid) + 

(10*lc_estuary/areagrid); 

    ELSE 

   END CASE; 

   CASE destination.q4_12 -- Swimming Outdoors 

    WHEN 'Yes' THEN  

    UPDATE MENE.NearSites SET lc_score = lc_score + (10*lc_seaside/areagrid) + 

(10*lc_estuary/areagrid); 

    ELSE 

   END CASE; 

   CASE destination.q4_17 -- Watersports 

    WHEN 'Yes' THEN  

    UPDATE MENE.NearSites SET lc_score = lc_score + (10*lc_seaside/areagrid) + 

(10*lc_estuary/areagrid); 

    ELSE 

   END CASE; 

 

   -- Sports Pitches 

   -- -------------- 

   CASE destination.q5_12 -- Playing Fields or Other Recreation Area 

    WHEN 'Yes' THEN  

    UPDATE MENE.NearSites SET lc_score = lc_score + (10*lc_sports_pitches/areagrid); 

    ELSE 

   END CASE; 

   CASE destination.q4_19 -- Informal games and sport 

    WHEN 'Yes' THEN  

    UPDATE MENE.NearSites SET lc_score = lc_score + (10*lc_sports_pitches/areagrid)+ 

(10*lc_golf/areagrid); 

    ELSE 

   END CASE; 

 

   -- Nature 

   -- ------ 

   CASE destination.q4_18 -- Wildlife watching  

    WHEN 'Yes' THEN  

    UPDATE MENE.NearSites SET lc_score = lc_score + (5*greatest(dg_nnr, dg_lnr, 

dg_natura2000, dg_sssi, dg_ramsar)/areagrid); 

    ELSE 

   END CASE; 

 

   -- Playgrounds 

   -- ----------- 

   CASE destination.q5_11 -- A children's playground 

    WHEN 'Yes' THEN  

    UPDATE MENE.NearSites SET lc_score = lc_score + (10*poi_playground); 

    ELSE 

   END CASE; 
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   -- (6) RECORD BEST 3 MATCHES 

   -- ------------------------- 

   UPDATE MENE.NearSites SET score = near_score + COALESCE(loc_score,0) + 

COALESCE(type_score,0) + COALESCE(lc_score,0); 

   IF NOT TEST THEN 

     matchcnt := 1; 

    FOR matches IN SELECT spid, near_score, loc_score, score FROM MENE.NearSites ORDER BY 

score DESC LIMIT 3 LOOP 

     EXIT WHEN NOT FOUND;  

     EXECUTE 'UPDATE mene.visit_match SET match'||matchcnt||'id = '||matches.spid||', 

match'||matchcnt||'score = '||matches.score||' WHERE visitid = '||destination.visitid; 

     matchcnt := matchcnt + 1;   

    END LOOP;  

   END IF; 

  END IF; 

 END IF; 

   

  IF pcounter = nprint THEN 

   nprocessed := (SELECT count(*) FROM mene.visit_match WHERE matchcode IS NOT NULL); 

   RAISE NOTICE ' Visits processed: % (% of % = % pct done)', counter, nprocessed, 

ntoprocess, (nprocessed/ntoprocess);  

   pcounter := 0; 

  END IF; 

    

  pcounter := pcounter + 1; 

  counter := counter + 1; 

 

 END LOOP; 

 

 IF NOT TEST THEN  

  DROP TABLE IF EXISTS MENE.NearSites; 

 END IF; 

  

END; 

$$ LANGUAGE plpgsql; 

 

 

 


